Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

  • W. Egger , G. Kögel , P. Sperr and H.-J. Gudladt


To understand the damage behavior of mechanically deformed metallic materials in more detail, the kind of defect and its concentration have to be known. In addition, the kinetics of decomposition and of precipitation hardening are influenced by the presence of defects and the corresponding concentration. Consequently, an analysis of dominating defects would be helpful. Compared with well known techniques, positron annihilation spectroscopy offers the opportunity for lifetime measurements that are characteristic for special kinds of defects, e.g. dislocations, small vacancy clusters and micro-voids. To detect the spatial distribution and to determine the concentration of defects, the low energy pulsed positron beam technique can be used. This technique, in combination with the scanning positron microscope, opens a broad field of applications for defect analysis in metallic and ceramic materials.

* Correspondence address, Prof. Dr. H.-J. Gudladt, Universität der Bundeswehr München, Fakultät für Luft und Raumfahrttechnik, Institut für Werkstoffkunde, D-85577 Neubiberg, Germany, Tel.: +498960042534. E-mail:


[1] W.Egger, G.Kögel, P.Sperr, W.Triftshäuser, J.Bär, S.Rödling, H.-J.Gudladt: Z. Metallkd.94 (2003) 687.Search in Google Scholar

[2] A.David, G.Kögel, P.Sperr, W.Triftshäuser: Phys. Rev. Lett.87 (2001) 0674021.10.1103/PhysRevLett.87.067402Search in Google Scholar

[3] G.Kögel, G.Dollinger: Appl. Surf. Science A252 (2006) 3111.Search in Google Scholar

[4] W.Bauer-Kugelmann, P.Sperr, G.Kögel, W.Triftshäuser: Mater. Sci. Forum63–365 (2001) 529.Search in Google Scholar

[5] R.Krause-Rehberg, H.S.Leipner: Positron Annihilation in Semiconductors: Defect Studies, Springer, Berlin, 1999.10.1007/978-3-662-03893-2Search in Google Scholar

[6] V.J.Gosh: Applied Surface Science85 (1995) 187.10.1016/0169-4332(94)00331-9Search in Google Scholar

[7] P.Kirkegaard, M.Eldrup: Computer Phys. Commun.7 (1974) 401.Search in Google Scholar

[8] J.Kansy: Nucl. Instr. Meth. A374 (1996) 235.10.1016/0168-9002(96)00075-7Search in Google Scholar

[9] G.Kögel: Appl. Phys. A63, 227235 (1996).10.1007/BF01567874Search in Google Scholar

[10] P.J.Schultz, K.G.Lynn: Rev. Mod. Phys.60 (1988) 701.Search in Google Scholar

[11] L.Zhen, W.D.Fei: J. Mater. Sci.32 (1997) 1985Search in Google Scholar

[12] G.A.Edwards, K.Stiller, G.L.Dunlop, M.J.Couper: Acta mater.Vol.46, No.11 (1998) 3893.Search in Google Scholar

[13] W.F.Miao, D.E.Laughlin: Scripta Mater. Vol. 40, No. 7 (1999) 873.10.1016/S1359-6462(99)00046-9Search in Google Scholar

[14] W.F.Miao, D.E.Laughlin: Met. Mater. Trans. A31 (2000) 361.Search in Google Scholar

[15] M.Murayama, K.Hono: Acta mater. Vol. 47, No. 5 (1999) 1537.10.1016/S1359-6454(99)00033-6Search in Google Scholar

[16] A.Dupasquier, G.Kögel, A.Somoza: Acta. Mater.52 (2004) 4707.Search in Google Scholar

[17] C.Zamponi: Ph.D. Thesis, University of Bonn (2002).Search in Google Scholar

[18] C.Hoeschen: et al. to be publishedSearch in Google Scholar

[19] D.Broek: Elementary Engineering Fracture Mechanics, Kluwer Academic Puplishers, Dodrecht, Boston, London.Search in Google Scholar

[20] S.Suresh: Fatigue of materials, Cambridge University Press (1998).10.1017/CBO9780511806575Search in Google Scholar

[21] J.Bär, Th.Volpp: MP Materialprüfung, 43 (2001) 6.10.1515/mt-2001-431-204Search in Google Scholar

[22] G.Kögel, W.Egger, S.Rödling, H.-J.Gudladt: Mater. Sci. Forum445–446 (2004) 126.Search in Google Scholar

[23] W.Egger, G.Kögel, P.Sperr, W.Triftshäuser, J.Bär, S.Rödling, H.-J.Gudladt: Mater. Sci. Eng. A387–389 (2004) 317.Search in Google Scholar

[24] C.Hidalgo, G.Gonzales-Doncel, S.Linderoth, J.San Juan: Phys. Rev. B41 (1990) 2441.Search in Google Scholar

[25] P.Page, J.R.Weertman, M.Roth: Acta. Metall.30 (1982) 1357.Search in Google Scholar

[26] P.Kettunen, T.Lepistö, G.Kostorz, G.Göltz: Acta. Metall.29 (1981) 966.Search in Google Scholar

[27] T.L.LepistöJ.Yli-Kauppila, P.Kettunen, P.Hautojärvi: Phys. Stat. Sol. (a)67 (1981) K93.10.1002/pssa.2210670248Search in Google Scholar

[28] D.L.Chen, D.Melisova, B.Weiss, R.Stickler: Fatigue Fract. Engng. Mater. Struct.20 (1997) 1551.Search in Google Scholar

[29] X.H.Chen, J.Lu, L.Lu: Scripta Mater.52 (2005) 1039.Search in Google Scholar

[30] H.-J.Christ, G.Hoffmann, O.Ōttinger: Mater. Sci. Eng.A20 (1995) 1.Search in Google Scholar

[31] A.Dupasquier, R.Romero, A.Somoza: Phys. Rev. B48 (1993) 9235.Search in Google Scholar

[32] G.Kögel et al. to be published.Search in Google Scholar

[33] H.Huomo, E.Soininen, A.Vehanen: Appl. Phys. A49 (1989) 647.Search in Google Scholar

[34] E.Hashimoto, M.Iwami, Y.Ueda: J. Phys. Cond. Matter6 (1994) 1611.Search in Google Scholar

[35] T.Wider, K.Maier, U.Holzwarth: Phys. Rev. B60 (1999) 179.Search in Google Scholar

Received: 2006-4-28
Accepted: 2006-9-12
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Downloaded on 26.9.2023 from
Scroll to top button