Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Directed assembly of fluidic networks by buckle delamination of films on patterned substrates

Myoung-Woon Moon, Seok Chung, Kwang-Ryeol Lee, Kyu Hwan Oh, Howard A. Stone and John W. Hutchinson


A method to create networks of intricate fluidic channels formed from metals and ceramics is proposed and demonstrated. The method exploits buckle delamination of a thin compressed film bonded to a substrate. A low adhesion layer coinciding with the desired layout of the channel network is laid down prior to deposition of the film. Once triggered, the buckle delamination propagates along the low adhesion pathways driven by release of the elastic energy stored in the film, assembling the entire channel network without external intervention. Strips, tapered strips and a selection of grids are demonstrated for diamond-like carbon films bonded to Si substrates with gold providing low adhesion. Control of the film thickness (15 to 260) and the width of the low adhesion regions (200 to microns) enables the cross-sectional area of the channel to be defined precisely with height determined by the buckle amplitude (40 to 500). The channel network has been integrated with a microfluidic interface formed from polydimethylsiloxane. Pressure-driven flow of two miscible streams shows convectively enhanced mixing in these nanoscale buckled channels.

* Correspondence address, Professor J. W. Hutchinson, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138 USA. Tel.: +1 617 495 2848, Fax: +1 617 496 0601, E-mail:


[1] J.W.Hutchinson, Z.Suo: Adv. Appl. Mech.29 (1992) 63.Search in Google Scholar

[2] H.M.Jensen: Acta Metal. Mater.41 (1993) 601.10.1016/0956-7151(93)90090-FSearch in Google Scholar

[3] B.Audoly: Phys. Rev. Lett.83 (1999) 4124.10.1103/PhysRevLett.83.4124Search in Google Scholar

[4] M.-W.Moon, H.M.Jensen, K.H.Oh, J.W.Hutchinson, A.G.Evans: J. Mech. Phys. Solids50 (2002) 2355.Search in Google Scholar

[5] L.B.Freund, S.Suresh: Thin film materials: Stress, defect formation and surface evolution, Cambridge Univ. Press, Cambridge (2004).10.1017/CBO9780511754715Search in Google Scholar

[6] A.Lee, B.M.Clemens, W.D.Nix: Acta Mater.52 (2004) 2081.Search in Google Scholar

[7] J.P.McDonald, V.R.Mistry, K.E.Ray, S.M.Yalisove: Appl. Phys. Lett.88 (2006), 183113.10.1063/1.2201620Search in Google Scholar

[8] M.-W.Moon, K.-R.Lee, K.H.Oh, J.W.Hutchinson: Acta Mater.52 (2004) 3151.Search in Google Scholar

[9] K.Gutensohn, C.Beythien, J.Bau, T.Fenner, P.Grewe, R.Koester, K.Padmanaban, P.Kuehnl: Thromb. Res.99 (2000) 577.Search in Google Scholar

[10] W.J.Ma, A.J.Ruys, R.S.Mason, P.J.Martin, A.Bendavid, Z.W.Liu, M.Ionescu, H.Zreiqat: Biomaterials28 (2007) 1620.Search in Google Scholar

[11] R.J.Narayan, P.N.Kumta, C.Sfeir, D.H.Lee, D.Olton, D.W.Choi: JOM56 (2004) 38.Search in Google Scholar

[12] M.Mrksich, L.E.Dike, J.Tien, D.E.Ingber, G.M.Whitesides: Exp. Cell Res.235 (1997) 305.Search in Google Scholar

[13] J.P.Bearinger, S.Terrettaz, R.Michel, N.Tirelli, H.Vogel, M.Textor, J.A.Hubbell: Nature Mater.2 (2003) 259.Search in Google Scholar

[14] P.J.A.Kenis, R.F.Ismagilov, G.M.Whitesides: Science285 (1999) 83.Search in Google Scholar

[15] G.M.Whitesides, E.Ostuni, S.Takayama, X.Y.Jiang, D.E.Ingber: Annu. Rev. Biomed. Eng.3 (2001) 335.Search in Google Scholar

[16] J.C.McDonald, D.C.Duffy, J.R.Anderson, D.T.Chiu, H.K.Wu, O.J.A.Schueller, G.M.Whitesides: Electrophoresis21 (2000) 27.Search in Google Scholar

[17] H.P.Chou, C.Spence, A.Scherer, S.Quake: Proc. Natl Acad. Sci. USA96 (1999) 11.Search in Google Scholar

[18] H.-H.Yu, J.W.Hutchinson: Int. J. Fract.113 (2002) 39.Search in Google Scholar

[19] M.-W.Moon, J.-W.Chung, K.-R.Lee, K.H.Oh, R.Wang, A.G.Evans: Acta Mater.50 (2002) 1219.Search in Google Scholar

[20] N.R.Tas, P.Mela, T.Kramer, J.W.Berenschot, A.van den Berg: Nano Lett.3 (2003) 1537.Search in Google Scholar

[21] N.R.Tas, J.Haneveld, H.V.Jansen, M.Elwenspoek, A.van den Berg: Appl. Phys. Lett.85 (2004) 3274.Search in Google Scholar

[22] L.J.Yang, T.J.Yao, Y.C.Tai: J. Micromech. Microeng.14 (2004) 220.Search in Google Scholar

[23] N.Ichikawa, K.Hosokawa, R.Maeda: J. Colloid Interf. Sci.280 (2004) 155.Search in Google Scholar

[24] R.S.Butter, D.R.Waterman, A.H.Lettington, R.T.Ramos, E.J.Fordham: Thin Solid Films311 (1997) 107.Search in Google Scholar

[25] M.Schneegans, E.Menzel: J. Colloid Interf. Sci.88 (1982) 97.Search in Google Scholar

[26] C.D.Bain, J.Evall, G.M.Whitesides: J. Am. Chem. Soc.111 (1989) 321.Search in Google Scholar

[27] A.D.Stroock, S.K.W.Dertinger, A.Ajdari, I.Mezic, H.A.Stone, G.M.Whitesides: Science295 (2002) 647.Search in Google Scholar

[28] H.A.Stone, A.D.Stroock, A.Ajdari: Ann. Rev. Fluid Mech.36 (2004) 381.Search in Google Scholar

[29] H.Daiguji, P.D.Yang, A.Majumdar: Nano Lett.4 (2004) 137.Search in Google Scholar

[30] V.R.Dukkipati, J.H.Kim, S.W.Pang, R.G.Larson: Nano Lett.6 (2006) 2499.Search in Google Scholar

Received: 2007-6-8
Accepted: 2007-9-10
Published Online: 2013-06-11
Published in Print: 2007-12-01

© 2007, Carl Hanser Verlag, München

Scroll Up Arrow