Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Phase stability of thermal barrier oxides: A comparative study of Y and Yb additions

  • Julie M. Cairney , Noemi R. Rebollo , Manfred Rühle and Carlos G. Levi


The maximum operating temperature of conventional thermal barrier coatings based on yttria-stabilized zirconia is ultimately limited by de-stabilization of the “non-transformable” t phase, rendering it susceptible to the monoclinic transformation upon cooling. Investigations into alternative thermal barrier oxide compositions suggest that Yb offers superior t stability compared with Y, Sc and larger rare earth cations at the same concentration. The present study sheds light on this behavior by comparing the microstructure evolution of specimens with 7.6 and 11.4 % MO1.5 (M = Y or Yb) heat treated at 1450 °C for times up to 512 h. X-ray diffractometry and transmission electron microscopy revealed that the onset of partitioning occurs at short times but then the compositions of the phases evolve slowly over time until sufficient stabilizer is depleted from the t phase to render it transformable. Substitution of Yb for Y delays the onset of monoclinic formation. Differences in the transformation behavior of the Y and Yb rich phases on cooling provide new insight and suggest refinements to the current thermodynamic models for the binary ZrO2 – MO1.5 systems are needed.

* Correspondence address, Prof. Carlos G. Levi Materials Department 1361D Engineering II University of California Santa Barbara, CA 93106-5050, USA Tel.: +1 805 893 2381 Fax: +1 805 893 8486 E-mail:


[1] A.G.Evans, D.R.Mumm, J.W.Hutchinson, G.H.Meier, F.S.Pettit: Prog. Mater. Sci.46 (2001) 505.Search in Google Scholar

[2] D.R.Mumm, A.G.Evans, I.T.Spitsberg: Acta Mater.49 (2001) 2329.Search in Google Scholar

[3] J.W.Hutchinson, A.G.Evans: Surf. Coat. Technol.149 (2002) 179.Search in Google Scholar

[4] X.Chen, R.Wang, N.Yao, A.G.Evans, J.W.Hutchinson, R.W.Bruce: Mater. Sci. Eng. A352 (2003) 221.Search in Google Scholar

[5] X.Chen, M.Y.He, I.T.Spitsberg, N.A.Fleck, J.W.Hutchinson, A.G.Evans: Wear256 (2004) 735.Search in Google Scholar

[6] C.Mercer, S.Faulhaber, A.G.Evans, R.Darolia: Acta Mater.53 (2005) 1029.Search in Google Scholar

[7] S.Krämer, S.Faulhaber, M.Chambers, D.R.Clarke, C.G.Levi, J.W.Hutchinson, A.G.Evans: Mater. Sci. Eng. A (accepted, 2007).Search in Google Scholar

[8] C.Mercer, J.R.Williams, D.R.Clarke, A.G.Evans: Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences 463 (2007) 1393.10.1098/rspa.2007.1829Search in Google Scholar

[9] C.G.Levi: Current Opinion in Solid State and Materials Science8 (2004) 77.10.1016/j.cossms.2004.03.009Search in Google Scholar

[10] S.Stecura: NASA TM-86905, NASA: Cleveland, OH (1985).Search in Google Scholar

[11] A.V.Virkar, R.L.K.Matsumoto: J. Am. Ceram. Soc.69 (1986) C-224.10.1111/j.1151-2916.1986.tb07341.xSearch in Google Scholar

[12] D.Baither, M.Bartsch, B.Baufeld, A.Tikhonovsky, M.Rühle, U.Messerschmidt: J. Am. Ceram. Soc.84 (2001) 1755.Search in Google Scholar

[13] T.A.Schaedler, R.M.Leckie, S.Krämer, A.G.Evans, C.G.Levi: J. Am. Ceram. Soc. (in press, 2007).Search in Google Scholar

[14] N.Claussen, M.Rühle, in: A.H.Heuer, L.W.Hobbs (Eds.), Science and Technology of Zirconia, The American Ceramic Society, Inc., Columbus, OH (1981) 137.Search in Google Scholar

[15] A.G.Evans, R.M.Cannon: Acta Mater.34 (1986) 761.Search in Google Scholar

[16] R.H.J.Hannink, P.M.Kelly, B.C.Muddle: J. Am. Ceram. Soc.83 (2000) 461.Search in Google Scholar

[17] M.Rühle, A.H.Heuer, in: N.Claussen, M.Rühle, A.H.Heuer (Eds.), Science and Technology of Zirconia II, The American Ceramic Society, Inc.: Columbus, OH (1984) 14.Search in Google Scholar

[18] R.A.Miller, J.L.Smialek, R.G.Garlick, in: A.H.Heuer, L.W.Hobbs (Eds.), Science and Technology of Zirconia, The American Ceramic Society, Inc., Columbus, OH (1981) 241.Search in Google Scholar

[19] G.Witz, V.Shklover, W.Steurer, S.Bachegowda, H.P.Bossmann: J. Am. Ceram. Soc.90 (2007) 2935 (doi: 10.1111/j.1551–2916.2007.01785.x).Search in Google Scholar

[20] U.Schulz: J. Am. Ceram. Soc.83 (2000) 904.10.2307/346149Search in Google Scholar

[21] V.Lughi, D.R.Clarke: J. Am. Ceram. Soc.88 (2005) 2552.Search in Google Scholar

[22] J.R.Nicholls, K.J.Lawson, A.Johnstone, D.S.Rickerby: Surf. Coat. Technol.151–152 (2002) 383.Search in Google Scholar

[23] D.Zhu, Y.L.Chen, R.A.Miller: Ceramic Engineering and Science Proceedings 24 (2003) 525.10.1002/9780470294802.ch75Search in Google Scholar

[24] R.D.Shannon: Acta Crystallogr. A32 (1976) 751.10.1107/S0567739476001551Search in Google Scholar

[25] N.R.Rebollo: Doctoral Dissertation in Materials, University of California, Santa Barbara, CA (2005).Search in Google Scholar

[26] S.Stecura: Thin Solid Films150 (1987) 15.10.1016/0040-6090(87)90305-1Search in Google Scholar

[27] R.M.Leckie: Doctoral Dissertation in Materials, University of California, Santa Barbara, Santa Barbara, CA (2006).Search in Google Scholar

[28] R.M.Leckie, C.G.Levi: unpublished work, University of California, Santa Barbara (2007).Search in Google Scholar

[29] F.M.Pitek, C.G.Levi: Surf. Coat. Technol.201 (2007) 6044.Search in Google Scholar

[30] S.Lakiza, O.Fabrichnaya, M.Zinkevich, F.Aldinger: J. Alloys Compod.420 (2006) 237.Search in Google Scholar

[31] C.Wang: Doctoral Dissertation in the Institute for Non-metallic Inorganic Materials, Universität Stuttgart, Stuttgart (2006).Search in Google Scholar

[32] M.Ciftcioglu, M.J.Mayo, in: M.J.Mayo, M.Kobayashi, J.Wadsworth (Eds.), Superplasticity in Metals, Ceramics and Intermetallics, Materials Research Society: San Francisco, CA (1990) 77.Search in Google Scholar

[33] R.C.Garvie, P.S.Nicholson: J. Am. Ceram. Soc.55 (1972) 303.Search in Google Scholar

[34] N.R.Rebollo, O.Fabrichnaya, C.G.Levi: Z. Metallkd.94 (2003) 163.Search in Google Scholar

[35] J.R.Brandon, R.Taylor: Surf. Coat. Technol.46 (1991) 75.Search in Google Scholar

[36] J.Ilavsky, J.K.Stalick: Surf. Coat. Technol.127 (2000) 120.Search in Google Scholar

[37] A.H.Heuer, R.Chaim, V.Lanteri, in: S.Somiya, N.Yamamoto, H.Yanagida (Eds.), Science and Technology of Zirconia III, The American Ceramic Society: Westerville, OH (1988) 3.Search in Google Scholar

[38] A.H.Heuer, R.Chaim, V.Lanteri: Acta Metall.35 (1987) 661.Search in Google Scholar

[39] A.H.Heuer, M.Rühle, in: M.Rühle, A.H.Heuer (Eds.), Science and Technology of Zirconia II, The American Ceramic Society, Inc.: Columbus, OH (1984) 118.Search in Google Scholar

[40] M.Rühle, N.Claussen, A.H.Heuer, in: N.Claussen, M.Rühle, A.H.Heuer (Eds.), Science and Technology of Zirconia II, The American Ceramic Society, Inc.: Columbus, OH (1984) 352.Search in Google Scholar

[41] J.Chevalier, B.Cales, J.M.Drouin: J. Am. Ceram. Soc.82 (1999) 2150.Search in Google Scholar

[42] V.Lughi, D.R.Clarke: Acta Mater.55 (2007) 2049.Search in Google Scholar

[43] A.Azzopardi, R.Mévrel, B.Saint-Ramond, E.Olson, K.Stiller: Surf. Coat. Technol.177–178 (2004) 131.Search in Google Scholar

[44] H.G.Scott: J. Mater. Sci.10 (1975) 1527.10.1007/BF01031853Search in Google Scholar

[45] M.Yoshimura, M.Yashima, T.Noma, S.Somiya: J. Mater. Sci.25 (1990) 2011.Search in Google Scholar

[46] J.Ilavsky, J.K.Stalick, J.Wallace: J. Therm. Spray Technol.10 (2001) 497.Search in Google Scholar

[47] S.Swaroop, M.Kilo, C.Argirusis, G.Borchardt, A.H.Chokshi: Acta Mater.53 (2005) 4975.Search in Google Scholar

[48] Y.K.Voron'koA.A.Sobol, L.I.Tsymbal: Inorg. Mater.34 (1998) 350.Search in Google Scholar

[49] M.Yashima, N.Ishizawa, M.Yoshimura, in: S.P.S.Badwal, M.J.Bannister, R.H.J.Hannink (Eds.), Science and Technology of Zirconia V, Tehcnomic Publishing Co.: Lancaster, PA (1993).Search in Google Scholar

[50] K.Sasaki, P.Bohac, L.J.Gauckler: J. Am. Ceram. Soc.76 (1994) 689.Search in Google Scholar

Received: 2007-8-31
Accepted: 2007-10-2
Published Online: 2013-06-11
Published in Print: 2007-12-01

© 2007, Carl Hanser Verlag, München

Downloaded on 5.2.2023 from
Scroll Up Arrow