Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Predicted precipitate back-stress and creep rupture strength of the advanced 9–12% Cr steel COST E2

  • I. Holzer and E. Kozeschnik

Abstract

Modern advanced 9–12% Cr steels are complex alloys with excellent creep strength even at high temperatures up to 620°C. In this work, the experimentally observed creep rupture strength of the European COST alloy E2 is compared to the calculated maximum obstacle effect (Orowan stress) caused by the precipitates present in these steels for different heat treatment conditions. The applied model for precipitation strengthening is briefly outlined. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after a long time under service conditions. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed.


* Correspondence address, Dipl.-Ing. Ivan Holzer Institute for Materials Science Welding and Forming, Graz University of Technology Kopernikusgasse 24, A-8010 Graz, Austria Tel.: +43 316 873 4305 Fax: +43 316 873 7187 E-mail:

References

[1] T.U.Kern, K.Wieghardt, H.Kirchner, in: R.Viswanathan, D.Gandy, K.Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, ASM International, United States of America (2005) 20.Search in Google Scholar

[2] F.Masuyama, in: R.Viswanathan, D.Gandy, K.Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, ASM International, United States of America (2005) 35.Search in Google Scholar

[3] R.Viswanathan, J.F.Henry, J.Tanzosh, G.Stanko, J.Shingledecker, V.Vitalis, in: R.Viswanathan, D.Gandy, K.Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, ASM International, United States of America (2005) 3.Search in Google Scholar

[4] B.Scarlin, T.U.Kern, M.Staubli, in: R.Viswanathan, D.Gandy, K.Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, ASM International, United States of America (2005) 80.Search in Google Scholar

[5] J.Bugge, S.Kjaer, R.Blum: Energy31 (2006) 1437.10.1016/j.energy.2005.05.025Search in Google Scholar

[6] A.Kostka, K.-G.Tak, R.J.Helling, Y.Estrin, G.Eggeler: Acta Mater.55 (2007) 539.10.1016/j.actamat.2006.08.046Search in Google Scholar

[7] R.Lagneborg: J. of Iron and Steel Institute (1969) 1503.Search in Google Scholar

[8] F.R.N.Nabarro: Physics of the Solid State42 (2000) 1456.10.1134/1.1307052Search in Google Scholar

[9] K.E.Amin, J.E.Dorn: Acta Metall.7 (1969) 1429.Search in Google Scholar

[10] K.Maruyama, K.Sawada, J.Koike: ISIJ Int.41 (2001) 641.10.2355/isijinternational.41.641Search in Google Scholar

[11] K.Sawada, K.Kubo, F.Abe: Mater. Sci. Eng. A319–321 (2001) 784.Search in Google Scholar

[12] F.Kauffmann, G.Zies, D.Willer, C.Scheu, K.Maile, K.H.Mayer, S.Straub, in: E.Roos (Ed.), Tagungsband 31. MPA-Seminar, Materialprüfungsanstalt Universität Stuttgart, Stuttgart (2005) 27.1.Search in Google Scholar

[13] B.Sonderegger: Characterisation of the Substructure of Modern Power Plant Steels using the EBSD-Method, Graz University of Technology, Graz (2005).Search in Google Scholar

[14] H.Cerjak, P.Hofer, B.Schaffernak, K.Spiradek, G.Zeiler: VGB Kraftwerkstechnik77 (1997) 691.Search in Google Scholar

[15] E.Kozeschnik, B.Buchmayr, in: H.Cerjak, H.K.D.H.Bhadeshia (Eds.), Mathermatical Modelling of Weld Phenomena, IOM Communications Ltd, London (2001) 349.Search in Google Scholar

[16] J.Svoboda, F.D.Fischer, P.Fratzl, E.Kozeschnik: Mater. Sci. Eng. A385 (2004) 166.Search in Google Scholar

[17] E.Kozeschnik, J.Svoboda, P.Fratzl, F.D.Fischer: Mater. Sci. Eng. A385 (2004) 157.Search in Google Scholar

[18] E.Kozeschnik, J.Svoboda, F.D.Fischer: CALPHAD28 (2005) 379.10.1016/j.calphad.2004.11.003Search in Google Scholar

[19] M.McLean: Acta Metal.33 (1985) 545.10.1016/0001-6160(85)90018-5Search in Google Scholar

[20] P.Polcik: Modellierung des Verformungsverhaltens der warmfesten 9–12% Chromstähle im Temperaturbereich von 550–650°C, Shaker Verlag, Aachen (1999).Search in Google Scholar

[21] T.Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London (1997).Search in Google Scholar

[22] G.Dimmler: Quantification of creep resistance and creep fracture strength of 9–12% Cr steel on microstructural basis, Graz University of Technology, Graz (2003).Search in Google Scholar

[23] J.Čadek: Creep in metallic materials, Elsevier, Czechoslovakia (1988).Search in Google Scholar

[24] B.Ilschner: Hochtemperatur-Plastizität, Springer-Verlag, Berlin/Heidelberg (1973).10.1007/978-3-642-80708-4Search in Google Scholar

[25] M.Ashby, in: G.S. Ansell, T.D. Cooper, F.V. Lenel (Eds.), Metallurgical Society Conference, Vol. 47, Gordon and Breach, New York (1968) 143.Search in Google Scholar

[26] C.Berger, R.B.Scarlin, K.H.Mayer, D.V.Thornton, S.M.Beech, in: D.Coutsouradis, J.H.Davidson, J.Ewald, P.Greenfield, T.Khan, M.Malik, D.B.Meadowcroft, V.Regis, R.B.Scarlin, F.Schubert, D.V.Thornton (Ed (Eds.), Kluwer Academic Publishers, Dordrecht (1994) 47.Search in Google Scholar

[27] R.W.Vanstone, COST 501/3 WP11 Metallography and alloy design group – Analysis of quantitative data, internal report, GEC Alsthom Turbine Generators Limited, Rugby UK, 1994.Search in Google Scholar

[28] J.Rajek: Computer simulation of precipitation kinetics in solid metals and application to the complex power plant steel CB8, Graz University of Technology, Graz (2005).Search in Google Scholar

[29] I.Holzer, J.Rajek, E.Kozeschnik, H.Cerjak, in: J.Lecomte-Beckers, M.Carton, F.Schubert, P.J.Ennis (Eds.), Materials for Advanced Power Engineering 2006, Forschungszentrum Jülich GmbH, Jülich (2006) 1191.Search in Google Scholar

[30] E.Kozeschnik, I.Holzer, in: F.Abe, T.U.Kern, R.Viswanathan (Eds.), Creep resistant steels, Woodhead Publishing, Cambridge, in press.Search in Google Scholar

[31] V.Vodarek, A.Strang, in: J.Lecomte-Beckers, M.Carton, F.Schubert, P.J.Ennis (Eds.), Materials for Advanced Power Engineering 2002, Forschungszentrum Jülich GmbH, Jülich (2002) 1223.Search in Google Scholar

[32] TCFE3 thermodynamic database, Thermo-Calc Software AB, Stockholm, Sweden, 1992–2004.Search in Google Scholar

[33] P.Hofer, PhD thesis (in German): Mikrostrukturelle Analyse als Basis für die Entwicklung neuer Kraftwerkswerkstoffe am Beispiel von G-X12 CrMoWVNbN 10-1-1, Graz University of Technology, Graz (1999).Search in Google Scholar

[34] H.K.Danielsen, J.Hald, F.G.Grumsen, M.A.J.Somers: Metall. Mater. Trans. A37 (2006) 2633.10.1007/BF02586098Search in Google Scholar

[35] G.Guntz, M.Julien, G.Kottmann, F.Pellicani, A.Pouilly, J.C.Vaillant: The T 91 Book – Ferritic tubes and pipe for high temperature use in boilers, Vallourec Industries, France (1991).Search in Google Scholar

Received: 2007-11-6
Accepted: 2008-1-13
Published Online: 2013-06-11
Published in Print: 2008-04-01

© 2008, Carl Hanser Verlag, München

Downloaded on 25.2.2024 from https://www.degruyter.com/document/doi/10.3139/146.101654/html
Scroll to top button