Abstract
The in-situ transmission electron microscopy technique allows direct observations of formation and growth of stress-induced martensite in pseudoelastic NiTi shape memory alloys. The present paper reports on the development of a miniature test procedure for in-situ straining experiments with specimens taken from small components. The deformation of an ultra-fine grained NiTi specimen is characterised by transmission electron microscopy (at early loading stages) and by optical microscopy (at larger strains). A complementary finite element analysis of the complex strain state in the specimen rationalises why the stress-induced martensitic transformation first occurs in the thin foil region of the specimen before spreading towards the outer rim of the specimen.
References
[1] T.Duerig, A.Pelton, D.Stöckel: Mater. Sci. Eng. A273–275 (1999) 149.Search in Google Scholar
[2] J.Van Humbeeck: Mater. Sci. Eng. A273–275 (1999) 134.10.1016/S0921-5093(99)00293-2Search in Google Scholar
[3] L.Krone, J.Mentz, M.Bram, H.P.Buchkremer, D.Stöver, M.Wagner, G.Eggeler, D.Christ, S.Reese, D.Bogdanski, M.Köller, S.Esenwein, G.Muhr, O.Prymak, M.Epple: Adv. Eng. Mater.7 (2005) 613.Search in Google Scholar
[4] M.Wagner, J.Richter, J.Frenzel, D.Grönemeyer, G.Eggeler: Materialwiss. Werkst.35 (2004) 320.Search in Google Scholar
[5] K.Otsuka, X.Ren: Prog. Mater. Sci.50 (2005) 511.Search in Google Scholar
[6] A.M.CondóF.C.Lovey, J.Olbricht, Ch.Somsen, A.Yawny: Mater. Sci. Eng.A481–482 (2008) 138.Search in Google Scholar
[7] J.Olbricht, A.Yawny, A.M.Condó, F.C.Lovey, G.Eggeler: Mater. Sci. Eng.A481–482 (2008) 142.Search in Google Scholar
[8] G.Eggeler, E.Hornbogen, A.Yawny, A.Heckmann, M.Wagner: Mater. Sci. Eng.A378 (2004) 24.Search in Google Scholar
[9] M.Wagner, T.Sawaguchi, G.Kausträter, D.Höffken, G.Eggeler: Mater. Sci. Eng. A378 (2004) 105.Search in Google Scholar
[10] T.Waitz, V.Kazykhanov, H.P.Karnthaler: Acta Mater.52 (2004) 137.Search in Google Scholar
[11] J.Khalil-Allafi, W.W.Schmahl, M.Wagner, H.Sitepu, D.M.Toebbens, G.Eggeler: Mater. Sci. Eng. A378 (2004) 161.Search in Google Scholar
[12] J.Khalil-Allafi, B.Hasse, M.Klönne, M.Wagner, Th.Pirling, W.Predki, W.W.Schmahl: Materialwiss. Werkst.35 (2004) 280.Search in Google Scholar
[13] R.Vaidyanathan, M.A.M.Bourke, D.C.Dunand: Acta Mater.47 (1999) 3353.Search in Google Scholar
[14] S.Rajagopalan, A.L.Little, M.A.M.Bourke, R.Vaidyanathan: Appl. Phys. Lett.86 (2005) 081901.Search in Google Scholar
[15] L.C.Brinson, I.Schmidt, R.Lammering: J. Mech. Phys. Solids52 (2004) 1549.Search in Google Scholar
[16] T.Sawaguchi, G.Kausträter, A.Yawny, M.Wagner, G.Eggeler: Met. Trans.A34 (2003) 2847.Search in Google Scholar
[17] A.Kröger, R.Wernhardt, Ch.Somsen, G.Eggeler, A.Wieck: Mater. Sci. Eng.A438–440 (2006) 513.Search in Google Scholar
[18] A.Yawny, M.Sade, G.Eggeler: Z. Metallkd.96 (2005) 608.Search in Google Scholar
[19] M.F.-X.Wagner, G.Eggeler: Int. J. Mater. Res.97 (2006) 1687.Search in Google Scholar
[20] ABAQUS, Version 6.6.3, Simulia, Providence, RI, USA, 2006.Search in Google Scholar
[21] J.A.Shaw, S.Kyriakides: Int. J. Plasticity13 (1998) 837.Search in Google Scholar
[22] J.A.Shaw: Int. J. Plasticity16 (2000) 541.10.1016/S0749-6419(99)00075-3Search in Google Scholar
[23] C.G'Sell, N.A.Aly-Helal, J.J.Jonas: J. Mater. Sci.18 (1983) 1731.Search in Google Scholar
[24] P.D.Wu, E.van der Giessen: Int. J. Plasticity11 (1995) 211.Search in Google Scholar
[25] M.F.-X.Wagner, G.Eggeler: Proc. of International Conference on Shape Memory and Superelastic Technologies (SMST) 2006, Pacific Grove, CA, USA, ASM International, in print.Search in Google Scholar
[26] J.Olbricht, A.Schäfer, M.F.-X.Wagner, G.Eggeler: Proc. of International Conference on Shape Memory and Superelastic Technologies (SMST) 2007, Tokyo, Japan, ASM International, in print.Search in Google Scholar
[27] Z.Q.Li, Q.P.Sun: Int. J. Plasticity18 (2002) 1481.Search in Google Scholar
© 2008, Carl Hanser Verlag, München