Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

High-temperature mechanical properties of Fe-40 at.% Al based intermetallic alloys with C or Ti addition

Miroslav Karlík, Petr Haušild, Vladimír Šíma, Přemysl Málek and Tomáš Vlasák

Abstract

Tensile and creep properties of vacuum-induction-melted and cast Fe-40Al-1C and Fe-40Al-1Ti (at.%) were studied. The ingots were hot-rolled at 1200 °C to plates of 12.5 mm thickness using a stainless steel sheath and cooled in air. The alloys showed microstructures with coarse elongated grains having diameters up to 500 and 300 m in the direction of rolling, respectively. Tensile tests were carried out at temperatures 20, 400, 600, 700, and 800 °C. The creep tests were performed under constant load of 100 MPa and 150 MPa at temperatures 550, 600, 650, and 670 °C. Fracture surfaces of tensile specimens tested up to 700 °C exhibited mainly intergranular decohesion. With increasing temperature, the proportion of ductile dimpled fracture increased, and at 800 °C the fracture surfaces of both alloys were practically completely covered by ductile dimples. In comparison to tensile test specimens, fracture surfaces of creep specimens showed an increased fraction of intergranular ductile fracture.


* Correspondence address, Dr. Miroslav Karlík, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 12000 Prague 2, Czech Republic, Tel.: +420 224 358 507, Fax: +420 224 358 523, E-mail:

References

[1] S.C.Deevi, V.K.Sikka: Intermetallics4 (1996) 357.Search in Google Scholar

[2] C.G.McKamey, in: N.S.Stoloff, V.K.Sikka (Eds.), Physical Metallurgy and Processing of Intermetallic Compounds, Chapman and Hall, New York (1996) 351.10.1007/978-1-4613-1215-4_9Search in Google Scholar

[3] P.Lejček, A.Fraczkiewicz: Intermetallics11 (2003) 1053.Search in Google Scholar

[4] H.Skoglund, M.Knutson, B.Karlsson: Intermetallics12 (2004) 977.Search in Google Scholar

[5] W.J.Zhang, R.S.Sundar, S.C.Deevi: Intermetallics12 (2004) 893.Search in Google Scholar

[6] E.Arzt, R.Behr, E.Göhring, P.Grahle, R.P.Mason: Mater. Sci. Eng. A234 (1997) 22.Search in Google Scholar

[7] M.A.Morris, D.G.Morris: Acta Metall. Mater.38 (1990) 551.Search in Google Scholar

[8] D.D.Risanti, G.Sauthoff: Intermetallics13 (2005) 1313.Search in Google Scholar

[9] W.J.Zhang, R.S.Sundar, S.C.Deevi: Intermetallics12 (2004) 893.Search in Google Scholar

[10] C.G.Oca, M.A.Muñoz-Morris, D.G.Morris: Intermetallics11 (2003) 425.Search in Google Scholar

[11] D.G.Morris, J.Chao, C.G.Oca, M.A.Muñoz-Morris: Mater. Sci. Eng. A339 (2003) 232.Search in Google Scholar

[12] G.Ji, T.Grosdidier, N.Bozzolo, S.Launois: Intermetallics15 (2007) 108.Search in Google Scholar

[13] J.M.Guilemany, C.R.C.Lima, N.Cinca, J.R.Miguel: Surf. Coat. Technol.201 (2006) 2072.Search in Google Scholar

[14] G.Ji, T.Grosdidier, H.L.Liao, J.-P.Morniroli, C.Coddet: Intermetallics13 (2005) 596.Search in Google Scholar

[15] V.ŠímaP.Kratochvíl, P.Kozelský, I.Schindler, P.Hána: Int. J. Mater. Res., this issue.Search in Google Scholar

[16] A.Radhakrishna, R.G.Baligidad, D.S.Sarma: Scripta Mater.45 (2001) 1077.Search in Google Scholar

[17] V.Vodičková, P.Kratochvíl, F.Dobeš: Kovove Mater.45 (2007) 153.Search in Google Scholar

[18] F.Dobeš, P.Kratochvíl, V.Vodičková, K.Milička, J.Pešička: Kovove Mater.46 (2008) 97.Search in Google Scholar

[19] F.Dobeš, P.Kratochvíl, K.Milička: Intermetallics14 (2006) 1199.Search in Google Scholar

Received: 2008-8-25
Accepted: 2008-11-17
Published Online: 2013-06-11
Published in Print: 2009-03-01

© 2009, Carl Hanser Verlag, München