Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Theoretical investigation of phase equilibria by the continuous displacement cluster variation method

  • Tetsuo Mohri


By employing the continuous displacement cluster variation method, order – disorder transition behavior of a two-dimensional square lattice is investigated. It is demonstrated that the distribution of displaced atoms around a Bravais lattice point continuously changes with temperature. The additional freedom of atomic displacement contributes to the entropy and thermal lattice expansion is confirmed. Finally, it is shown that the order – disorder transition temperature decreases as compared with the one by the conventional cluster variation method in which no local atomic displacements are allowed.

* Correspondence address, Professor Tetsuo Mohri, Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628, Japan, Tel.: +81 11 706 6348, Fax: +81 11 706 6348, E-mail:


[1] R.Kikuchi: Phys. Rev.81 (1951) 998.10.1103/PhysRev.81.988Search in Google Scholar

[2] See for instance, TetsuoMohri, in: W.Pfeiler (Ed.), Alloy Physics, Chapt. 10 and references therein, WILEY-VCH (2007) 525588.Search in Google Scholar

[3] T.B.Wu, J.B.Cohen, W.Yelon: Acta metall.30 (1982) 20652070; T.B. Wu, J.B. Cohen: Acta metal. 31 (1983) 19291935; T.B. Wu, J.B. Cohen; Acta metall. 32 (1984) 861867.Search in Google Scholar

[4] T.Mohri, K.Terakura, T.Oguchi, K.Watanabe: G.W.Lorimer (Ed.), Phase Transformation '87, The Institute of Metals (1988) 433437.Search in Google Scholar

[5] R.Kikuchi: J. Phase. Equilibria19 (1998) 412421.10.1361/105497198770341888Search in Google Scholar

[6] R.Kikuchi, A.Beldjenna: Physica A182 (1992) 617.Search in Google Scholar

[7] R.Kikuchi, K.Masuda-Jindo: Comp. Mat. Sci.14 (1999) 295.Search in Google Scholar

[8] H.Uzawa, T.Mohri: Mater. Trans.42 (2001) 422.Search in Google Scholar

[9] H.Uzawa, T.Mohri: Mater. Trans.43 (2002) 2185.Search in Google Scholar

[10] T.Mohri: Materials Trans.49 (2008) 2247.10.2320/matertrans.MB200802Search in Google Scholar

[11] J.A.Barker: Proc. Roy. Soc. A216 (1953) 45.10.1098/rspa.1953.0005Search in Google Scholar

[12] R.Kikuchi: J. Chem. Phys.60 (1974) 1071.10.1063/1.1681115Search in Google Scholar

[13] V.Morruzi, J.F.Janak, K.Schwarz: Phys. Rev. B37 (1988) 790.Search in Google Scholar

[14] J.M.Sanchez, J.R.Barefoot, R.N.Jarret, J.K.Tien: Acta metal.32 (1984) 1519.Search in Google Scholar

[15] T.Mohri, J.Tsutsumi, K.Watanabe: Bull. Faculty of Engr., Hokkaido Univ.138 (1988) 1.Search in Google Scholar

[16] T.Mohri, C.Kobayashi, K.Watanabe: Memoirs of Faculty of Engr., Hokkaido Univ. XVII (1988) 297.Search in Google Scholar

[17] T.Mohri, J.M.Sanchez, D.De Fontaine: Acta metal.33 (1985) 1171.Search in Google Scholar

[18] K.Binder: Phys. Rev. Lett. 45 (1980) 811.10.1103/PhysRevLett.45.811Search in Google Scholar

[19] T.Horiuchi, S.Takizawa, T.Suzuki, T.Mohri: Metall. Mater. Trans. A26 (1995) 11.Search in Google Scholar

[20] R.O.Willliams: Report No. ORNL-5140, Oak Ridge National Lab., Oak Ridge, TN (1976).Search in Google Scholar

[21] F.A.Lindemann: Z. Phys.11 (1910) 609.10.3109/07357909309011680Search in Google Scholar PubMed

Received: 2008-8-25
Accepted: 2008-12-18
Published Online: 2013-06-11
Published in Print: 2009-03-01

© 2009, Carl Hanser Verlag, München

Downloaded on 24.2.2024 from
Scroll to top button