Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Theoretical investigation of phase equilibria by the continuous displacement cluster variation method

Tetsuo Mohri

Abstract

By employing the continuous displacement cluster variation method, order – disorder transition behavior of a two-dimensional square lattice is investigated. It is demonstrated that the distribution of displaced atoms around a Bravais lattice point continuously changes with temperature. The additional freedom of atomic displacement contributes to the entropy and thermal lattice expansion is confirmed. Finally, it is shown that the order – disorder transition temperature decreases as compared with the one by the conventional cluster variation method in which no local atomic displacements are allowed.


* Correspondence address, Professor Tetsuo Mohri, Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628, Japan, Tel.: +81 11 706 6348, Fax: +81 11 706 6348, E-mail:

References

[1] R.Kikuchi: Phys. Rev.81 (1951) 998.10.1103/PhysRev.81.988Search in Google Scholar

[2] See for instance, TetsuoMohri, in: W.Pfeiler (Ed.), Alloy Physics, Chapt. 10 and references therein, WILEY-VCH (2007) 525588.Search in Google Scholar

[3] T.B.Wu, J.B.Cohen, W.Yelon: Acta metall.30 (1982) 20652070; T.B. Wu, J.B. Cohen: Acta metal. 31 (1983) 19291935; T.B. Wu, J.B. Cohen; Acta metall. 32 (1984) 861867.Search in Google Scholar

[4] T.Mohri, K.Terakura, T.Oguchi, K.Watanabe: G.W.Lorimer (Ed.), Phase Transformation '87, The Institute of Metals (1988) 433437.Search in Google Scholar

[5] R.Kikuchi: J. Phase. Equilibria19 (1998) 412421.10.1361/105497198770341888Search in Google Scholar

[6] R.Kikuchi, A.Beldjenna: Physica A182 (1992) 617.Search in Google Scholar

[7] R.Kikuchi, K.Masuda-Jindo: Comp. Mat. Sci.14 (1999) 295.Search in Google Scholar

[8] H.Uzawa, T.Mohri: Mater. Trans.42 (2001) 422.Search in Google Scholar

[9] H.Uzawa, T.Mohri: Mater. Trans.43 (2002) 2185.Search in Google Scholar

[10] T.Mohri: Materials Trans.49 (2008) 2247.10.2320/matertrans.MB200802Search in Google Scholar

[11] J.A.Barker: Proc. Roy. Soc. A216 (1953) 45.10.1098/rspa.1953.0005Search in Google Scholar

[12] R.Kikuchi: J. Chem. Phys.60 (1974) 1071.10.1063/1.1681115Search in Google Scholar

[13] V.Morruzi, J.F.Janak, K.Schwarz: Phys. Rev. B37 (1988) 790.Search in Google Scholar

[14] J.M.Sanchez, J.R.Barefoot, R.N.Jarret, J.K.Tien: Acta metal.32 (1984) 1519.Search in Google Scholar

[15] T.Mohri, J.Tsutsumi, K.Watanabe: Bull. Faculty of Engr., Hokkaido Univ.138 (1988) 1.Search in Google Scholar

[16] T.Mohri, C.Kobayashi, K.Watanabe: Memoirs of Faculty of Engr., Hokkaido Univ. XVII (1988) 297.Search in Google Scholar

[17] T.Mohri, J.M.Sanchez, D.De Fontaine: Acta metal.33 (1985) 1171.Search in Google Scholar

[18] K.Binder: Phys. Rev. Lett. 45 (1980) 811.10.1103/PhysRevLett.45.811Search in Google Scholar

[19] T.Horiuchi, S.Takizawa, T.Suzuki, T.Mohri: Metall. Mater. Trans. A26 (1995) 11.Search in Google Scholar

[20] R.O.Willliams: Report No. ORNL-5140, Oak Ridge National Lab., Oak Ridge, TN (1976).Search in Google Scholar

[21] F.A.Lindemann: Z. Phys.11 (1910) 609.10.3109/07357909309011680Search in Google Scholar PubMed

Received: 2008-8-25
Accepted: 2008-12-18
Published Online: 2013-06-11
Published in Print: 2009-03-01

© 2009, Carl Hanser Verlag, München