Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts

  • Walter Michaeli , Christian Hopmann , Kirsten Bobzin , Tim Arping , Thomas Baranowski , Barbara Heesel , Gottfried Laschet , Thomas Schläfer and Mehmet Oete

Abstract

The mechanical properties of injection moulded plastic parts depend on the morphology, the degree of crystallinity and the molecular orientation of the formed microstructure. In order to take the variation of the microstructure into account in a structural analysis, a novel multi-scale, integrated simulation approach is presented here. At first, a coupled mould filling and heat transfer analysis is achieved at the macroscale and its temperature field is transferred to the micromodel. Based on the concept of cellular automata, a 3-D microstructure evolution model is developed. It specifies the nucleation of the spherulite germs and describes their expansion rate. To evaluate the effective mechanical properties of the simulated microstructures, the homogenisation method is applied directly to the spherulites, assembled in few classes according to their crystallinity degree. These local properties are then introduced into a new multilinear material model for structural analysis of thermoplastics. Finally, the influence of the microstructure on macroscopic behaviour is outlined for a polypropylene tensile bar, extracted from an injection moulded plate.


Dr.-Ing. Klaus Küsters, Institute of Plastics Processing (IKV) at RWTH Aachen University, Pontstraβe 49, 52062 Aachen, Germany. Tel.: +49(0) 241 80 93806, Fax: +49(0)241 80 92262, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] I.P.Coccorullo, R.Pantani, G.Titomanlio: Polymer44 (2003) 1.10.1016/S0032-3861(02)00762-0Search in Google Scholar

[2] J.D.Hoffman, G.T.Davis, J.I.J.Lauritzen: Treatise on Solid State Chemistry. Plenum Press, New York (1976).Search in Google Scholar

[3] T.Huang, M.R.Kamal: Polym. Eng. Sci.40 (2000) 8.10.1002/pen.11311Search in Google Scholar

[4] J.D.Hoffman, R.L.Miller: Polymer38 (1997) 13.10.1016/S0032-3861(97)00071-2Search in Google Scholar

[5] H.Janeschitz–Kriegl: Crystallization Modalities in Polymer Melt Processing, Springer-Verlag, Wien (2010).10.1007/978-3-211-87627-5Search in Google Scholar

[6] L.Mandelkern: Crystallization of Polymers, McGraw Hill, New York (1964).Search in Google Scholar

[7] M.Moneke: Die Kristallisation von verstärkten Thermoplasten während der schnellen Abkühlung und unter Druck, TU Darmstadt, 2001.Search in Google Scholar

[8] K.Nakamura, K.Katayama, T.Amano: J. Appl. Polym. Sci.17 (1973) 4.10.1002/app.1973.070170404Search in Google Scholar

[9] M.Zinet, R.E.Otmani, M.Boutaous, P.Chantrenne: Polym. Eng. Sci.50 (2010).10.1002/pen.21733Search in Google Scholar

[10] S.Anantawaraskul, S.Ketdee, P.Supaphol: J. Appl. Polym. Sci.111 (2008) 5.Search in Google Scholar

[11] D.Raabe, A.Godara: Modelling Simul. Mater. Sci. Eng.13 (2005) 5.10.1088/0965-0393/13/5/007Search in Google Scholar

[12] F.J.M.F.Custodio, G.W.M.Peters, P.D.Anderson, A.M.Cunha, H.E.H.Meijer: Proceedings of the Polymer Processing Society 24th Annual Meeting, Salerno (2008).Search in Google Scholar

[13] F.J.M.F.Custodio, R.J.A.Steenbakkers, P.D.Anderson, G.W.M.Peters, H.E.H.Meijer: Macromolecular Theory and Simulations18 (2009) 9.Search in Google Scholar

[14] R.Pantani, I.Coccorullo, V.Speranza, G.Titamanlio: Polym. Eng. Sci.48 (2007) 9.Search in Google Scholar

[15] B.J.Lee, D.M.Parks, S.Ahzi: J. of Mech. and Phys. of Solids.41 (1993) 10.10.1016/0022-5096(93)90018-BSearch in Google Scholar

[16] J.A.W.van Dommelen, D.M.Parks, M.C.Boyce, W.A.M.Brekelmans, F.T.TBaaijens: J. of Mech. and Phys. of Solids.51 (2003).Search in Google Scholar

[17] S.Nikolov, I.Doghri, O.Pierard, L.Zealouk, A.Goldberg: J. of Mech. and Phys. of Solids.50 (2002) 11.10.1016/S0022-5096(02)00036-4Search in Google Scholar

[18] F.Bédoui, J.Diani, G.Regnier, W.Seiler: Acta Materialia54 (2006) 6.Search in Google Scholar

[19] F.Feyel, J.L.Chaboche: Comput. Meth. in Appl. Mech. and Eng.183 (2000) 34.10.1016/S0045-7825(99)00224-8Search in Google Scholar

[20] E.Sanchez-Palencia: Non homogeneous media and vibration theory (Lecture Notes in physics), No. 127, Springer Verlag, Berlin (1980).Search in Google Scholar

[21] J.M.Guedes, N.Kikuchi: Comput. Meth. in Appl. Mech. and Eng.83 (1990) 2.10.1016/0045-7825(90)90148-FSearch in Google Scholar

[22] J.D.Eshelby: Proc. R. Soc. Lond., Ser. A (1957).Search in Google Scholar

[23] T.Mori, K.Tanaka: Acta Metall.21 (1973) 5.10.1016/0001-6160(73)90064-3Search in Google Scholar

[24] G.P.Tandon, G.J.Weng: Polym. Comp.5 (1984) 4.10.1002/pc.750050413Search in Google Scholar

[25] S.G.Advani, C.Tucker: J. Rheol.31 (1987) 8.10.1122/1.549945Search in Google Scholar

[26] D.Gutberlet: Ansätze zur verbesserten Werkstoffbeschreibung für die Dimensionierung von thermoplastischen Kunststoffen, RWTH Aachen (2002).Search in Google Scholar

[27] M.Stojek, M.Stommel, W.Korte, in: W.Michaeli (Ed.): FEM zur Auslegung von Kunststoff- und Elastomerbauteilen, Springer-VDI, Düsseldorf (1998).Search in Google Scholar

[28] G.Menges, E.Haberstroh, W.Michaeli, E.Schmachtenberg: Werkstoffkunde Kunststoffe, Carl Hanser, München, Wien (2002).Search in Google Scholar

[29] DIN 53504: Prüfung von Kautschuk und Elastomeren – Bestimmung von Reißfestigkeit, Zugfestigkeit, Reißdehnung und Spannungswerten im Zugversuch, Beuth, Berlin (2009).Search in Google Scholar

[30] DIN EN ISO 527-2: Kunststoffe – Bestimmung der Zugeigenschaften – Teil 2: Prüfbedingungen für Form- und Extrusionsmassen, Beuth, Berlin (2010).Search in Google Scholar

[31] S.Hoffmann: Berechnung von Kristallisationsvorgängen in Kunststoffformteilen, RWTH Aachen (2003).Search in Google Scholar

[32] W.Michaeli, T.Baranowski: J. Polym. Eng.1 (2010) 30.Search in Google Scholar

[33] W.Michaeli, K.Bobzin, T.Arping, N.Bagcivan, T.Baranowski, B.Heesel, T.Kashko: Proceedings of the Polymer Processing Society 26th Annual Meeting, Banff (2010).Search in Google Scholar

[34] J.W.Housmans: Flow induced crystallization of isotactic polypropylenes, Technische Universiteit Eindhoven (2008).Search in Google Scholar

[35] G.Laschet, S.Rex: ASME, Proc. of Turbo Expo (2008).Search in Google Scholar

[36] G.Laschet: Comput. Meth. in Appl. Mech. and Eng.191 (2002) 4142.10.1016/S0045-7825(02)00319-5Search in Google Scholar

[37] K.Tashiro, M.Kobayashi, H.Tadokoro: Polymer J.24 (1992) 9.10.1295/polymj.24.899Search in Google Scholar

[38] C.Sawatari, M.Matsuo: Macromolecules19 (1986) 7.Search in Google Scholar

[39] J.Betten: Kontinuumsmechanik, Springer, Berlin, Heidelberg (2001).10.1007/978-3-642-56562-5Search in Google Scholar

[40] J.Altenbach, H.Altenbach: Einführung in die Kontinuumsmechanik, Teubner, Berlin (1994).Search in Google Scholar

[41] G.Laschet, T.Baranowski, T.Kashko, T.Arping: Effective elastic properties of 3D PP microstructures of an injection moulded plate via different homogenization schemes. GAMM2011, Graz, 2011.10.1002/pamm.201110257Search in Google Scholar

Received: 2011-4-1
Accepted: 2011-10-17
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.3139/146.110628/html
Scroll to top button