Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT

  • Thomas Mottitschka , Gerhard Pusch , Horst Biermann , Lutz Zybell and Meinhard Kuna

Abstract

The employment of ferritic nodular cast iron for components subjected to high stress requires a detailed fracture mechanics evaluation of crack growth under static and cyclic loading. During operation, for instance, in wind power plants, such component parts are subjected to loading of variable amplitude, which influences their lifetime considerably. For the evaluation of crack propagation and the remaining service life in this case, the calculation methods currently well-established in practice cannot be employed for cast iron with nodular graphite, since overloads lead to microstructure-related and material-specific load history effects in terms of crack growth acceleration. In this work, investigations of crack growth under constant and variable amplitude loading as well as static fracture toughness investigations and strain-controlled cyclic deformation experiments are presented.


* Dipl.-Ing. Thomas Mottitschka, Gustav-Zeuner-Straβe 5, 09599 Freiberg, Germany. Tel.: +49 (0) 37 31 39-33 26, Fax: +49 (0) 37 31 39-37 03, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] F.Pollicino: DVM-Bericht239 (2007) p. 57.Search in Google Scholar

[2] G.Pusch: Konstruieren + Gießen33 (2008) p. 2.Search in Google Scholar

[3] H.Stroppe, G.Pusch, A.Ludwig: Konstruieren + Gießen29 (2004) p. 19.Search in Google Scholar

[4] G.Pusch, P.Trubitz, B.Rehmer: Konstruieren + Gießen26 (2001) p. 4.Search in Google Scholar

[5] W.Baer: Doctoral Thesis, TU Bergakademie Freiberg (1996).Search in Google Scholar

[6] G.Pusch, B.Komber, O.Liesenberg: Konstruieren + Gießen21 (1996) p. 49.Search in Google Scholar

[7] http://www.wind-energie.de, Bundesverband WindEnergie e.V. (2011).Search in Google Scholar

[8] H.A.Richard, M.Sander: Ermüdungsrisse – Erkennen, sicher beurteilen, vermeiden. Vieweg + Teubner Verlag, Wiesbaden (2009).10.1007/978-3-8348-9232-4Search in Google Scholar

[9] M.Sander, H.A.Richard: Fatigue Fract. Eng. Mater. Struct.29 (2006) p. 291.10.1111/j.1460-2695.2006.00992.xSearch in Google Scholar

[10] S.Rödling: Doctoral Thesis, Universität der Bundeswehr München, Fakultät für Luft und Raumfahrttechnik, Institut für Werkstoffkunde, 2003.Search in Google Scholar

[11] J.Steinbock: Doctoral Thesis, Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik, Institut für Werkstoffkunde, 2008.Search in Google Scholar

[12] J.Bär, S.Rödling, M.Broll, H.Gudladt: Mat.-wiss. u. Werkstofftech.33 (2002) p. 177.10.1002/1521-4052(200204)33:4<177::AID-MAWE177>3.0.CO;2-GSearch in Google Scholar

[13] P.Hübner, H.Schlosser, G.Pusch, H.Biermann: Int. J. Fat.29 (2007) p. 1788.10.1016/j.ijfatigue.2007.01.012Search in Google Scholar

[14] T.Mottitschka, G.Pusch, H.Biermann, L.Zybell, M.Kuna: Proc. Eng.2 (2010) p.1557.10.1016/j.proeng.2010.03.168Search in Google Scholar

[15] J.Ohser, U.Lorz: Quantitative Gefügeanalyse, Theoretische Grundlagen und Anwendung, Freiberger Forschungshefte B 276, Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig-Stuttgart (1994).Search in Google Scholar

[16] J.Ohser, H.Tscherny: Grundlagen der quantitativen Gefügeanalyse, Freiberger Forschungshefte B 264, Deutscher Verlag für Grundstoffindustrie, Leipzig (1988).Search in Google Scholar

[17] ISO 12135: Metallic materials – Unified method of test for the determination of quasistatic fracture toughness, 2002.Search in Google Scholar

[18] ASTM E 1820-06: Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, United States, www.astm.org.Search in Google Scholar

[19] ESIS P2-92: Procedure for determining the fracture behaviour of metallic materials, European Structural Integrity Society, Delft (1992).Search in Google Scholar

[20] ASTM E 647-08: Standard test method for measurement of fatigue crack growth rates. ASTM International, West Conshohocken, 2008.www.astm.org.Search in Google Scholar

[21] ISO 12108: Metallic materials – Fatigue testing – Fatigue crack growth method, 2002.Search in Google Scholar

[22] A.A.ten Have: WISPER and WISPERX: Final definition of two standardised fatigue loading sequences for wind turbine blades, Technical publication NLR TP 91476 U (1991).Search in Google Scholar

[23] L.Zybell, M.Kuna, T.Mottitschka, M.Hoffmann, G.Pusch, H.Biermann: DVM-Bericht241 (2009) p. 73.Search in Google Scholar

[24] E.Roos: DVM-Bericht243 (2011) p. 153.Search in Google Scholar

[25] J.D.Landes: Fatigue Fract. Eng. Mater. Struct.18 (1995) p. 1298.10.1111/j.1460-2695.1995.tb00855.xSearch in Google Scholar

[26] J.D.Landes: Int. J. Fract.145 (2007) p. 285.10.1007/s10704-007-9118-xSearch in Google Scholar

[27] S.Henkel, P.Hübner, G.Pusch: Konstruieren + Gießen33 (2008) p. 41.Search in Google Scholar

Received: 2011-6-7
Accepted: 2011-10-25
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.3139/146.110636/html
Scroll to top button