Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

Numerical correction of X-ray detector backlighting

Axel Lange , Manfred P. Hentschel , Andreas Kupsch and Bernd R. Müller


A novel approach to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background signals (“backlighting”) of 2D X-ray detectors is suggested. Depending on the detector geometry the mechanism may be different, either based on the optical scattering by the fluorescent screen materials into optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert–Beer's law in single projections (radiographs).

When used as input data for computed tomography these violations are directly observed via modulation of the projected mass as a function of the rotation phase and the sample's aspect ratio (dynamics). The magnitude of the diffuse background signal depends on the detector area covered by the projected sample. They are more pronounced the smaller the shadowed area and the stronger the total attenuation. This implies that the reconstruction suffers from additional anisotropic artifacts caused by elongated sample structures.

This issue is studied simply by absorption of flat plates in a conventional laboratory radiography set-up and at a synchrotron radiation facility. In the latter case beam hardening artifacts can be excluded due to the monochromatic radiation. The proposed correction procedure requires simple integral intensity offsets as a constant (non-local) light scattering mechanism is assumed.

* Correspondence address Dipl.-Phys. Axel Lange, BAM-8.5, 12200 Berlin, Germany, Tel.: +49 30 81 04 36 67, Fax: +49 30 81 04 18 37, E-mail:


[1] C.Schmidgunst, D.Ritter, E.Lang: Med. Phys.34 (2007) 3649. 17926969; 10.1118/1.2760024Search in Google Scholar

[2] in Google Scholar

[3] A.Rack, S.Zabler, B.R.Müller, H.Riesemeier, G.Weidemann, A.Lange, J.Goebbels, M.P.Hentschel, W.Görner: Nucl. Instrum. Meth. A586 (2008) 327. 10.1016/j.nima.2007.11.020Search in Google Scholar

[4] T.Martin, A.Koch: J. Synchrotron Rad.13 (2006) 180. 16495618; 10.1107/S0909049506000550Search in Google Scholar

[5] U.Bonse, F.Busch: Prog. Biophys. Mol. Bio.65 (1996) 133. 10.1016/S0079-6107(96)00011-9Search in Google Scholar

[6] A.Koch, C.Raven, P.Spanne, A.Snigirev: J. Opt. Soc. Am.15 (1998) 1940. 10.1364/JOSAA.15.001940Search in Google Scholar

[7] A.Lange, A.Kupsch, M.P.Hentschel, I.Manke, N.Kardjilov, T.Arlt, R.Grothausmann: J. Power Sources196 (2011) 5293. 10.1016/j.jpowsour.2010.10.106Search in Google Scholar

[8] I.Manke, C.Hartnig, N.Kardjilov, A.Hilger, A.Lange, A.Kupsch, J.Banhart: MP Mater. Test.51 (2009) 219.Search in Google Scholar

[9] A.Rack, T.Weitkamp, M.Riotte, D.Grigoriev, T.Rack, L.Helfen, T.Baumbach, R.Dietsch, T.Holz, M.Krämer, F.Siewert, M.Meduna, P.Cloetens, E.Ziegler: J. Synchrotron Rad.17 (2010) 496. 20567082; 10.1107/S0909049510011623Search in Google Scholar

[10] J.S.Karp, D.A.Mankoff, G.Muehllehner: Nucl. Instrum. Meth. A273 (1988) 891. 10.1016/0168-9002(88)90114-3Search in Google Scholar

[11] K.Lee, P.E.Kinahan, R.S.Miyaoka, J.-S.Kim, T.K.Lewellen: IEEE T. Nucl. Sci.51 (2004) 27. 10.1109/TNS.2004.824824Search in Google Scholar

[12] D.Lazos, D.Pokhrel, Z.Su, J.Lu, J.F.Williamson: Med. Phys.35 (2008) 2989. 10.1118/1.2962928Search in Google Scholar

[13] F.Krejčí, J.Jakubek, J.Dammer, D.Vavřík: Nucl. Instrum. Meth. A607 (2009) 208. 10.1016/j.nima.2009.03.153Search in Google Scholar

[14] M.P.Hentschel, R.Hosemann, A.Lange, B.Uther, R.Brückner: Acta Cryst. A43 (1987) 506. 10.1107/S0108767387099100Search in Google Scholar

[15] H.Graafsma, Vries: J. Appl. Cryst.32 (1999) 683. 10.1107/S0021889899003817Search in Google Scholar

Received: 2011-7-5
Accepted: 2011-11-14
Published Online: 2013-05-31
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Downloaded on 30.1.2023 from
Scroll Up Arrow