Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques

  • Felix Hofmann , Brian Abbey , Leigh Connor , Nikolaos Baimpas , Xu Song , Sinéad Keegan and Alexander M. Korsunsky


For high performance, safety-critical applications, such as aerospace components, in-depth understanding of the material's response to complex loading conditions is essential. Moreover, it is vital to know how the material behaviour may be modified as a consequence of fatigue loading and how its eventual failure occurs. Unlike bulk properties, such as stiffness, yield stress, etc. that depend on the average response of the grains in a polycrystal, material failure is determined by “weakest link” type mechanisms. These depend strongly on grain-level deformation behaviour and grain-to-grain interactions. Micro-beam Laue diffraction is a powerful tool to probe these phenomena. However, the classical setup is limited to the study of sample surface regions or thin sections, due to the limited penetration into the sample at photon energies of 5 – 25 keV. A much more useful tool for the material scientist and engineer would allow the probing of grain-level orientation and stress in thicker sections of engineering components. To this end, we have developed the high energy transmission Laue (HETL) technique, an extension of the micro-beam Laue technique to significantly higher photon energies (50 – 150 keV). For the imaging of lattice orientation and elastic strain in three dimensions, we propose two alternative approaches: Laue orientation tomography (LOT) and high energy differential aperture X-ray microscopy (HEDAXM). In this paper an overview of the recent progress in HETL, LOT and HEDAXM measurements will be given and some first results illustrating the potential of these techniques presented.

* Dr. Felix Hofmann, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK, Tel.: +49 27 61 63 088 (home) +44 77 62 706 787 (mobile), Fax: n/a, E-mail:


[1] J.Lemaitre, J.L.Chaboche, B.Shrivastava: Mechanics of Solid Materials, Cambridge University Press, Cambridge (1994).Search in Google Scholar

[2] F.Dunne, N.Petrinic: Introduction to Computational Plasticity, Oxford University Press, Oxford (2005).Search in Google Scholar

[3] M.A.Crisfield: Non-Linear Finite Element Analysis of Solids and Structures: Essentials, Wiley, New York (1991).Search in Google Scholar

[4] A.E.O.Hall: Proc. Phys. Soc. B64 (1951) 747753. 10.1088/0370-1301/64/9/30310.1088/0370-1301/64/9/303Search in Google Scholar

[5] N.J.Petch: J. Iron Steel Inst.174 (1953) 2528.Search in Google Scholar

[6] K.W.Mcelhaney, J.J.Vlassak, W.D.Nix: J. Mater. Res.13 (1998) 13001306. 10.1557/JMR.1998.018510.1557/JMR.1998.0185Search in Google Scholar

[7] D.J.Lloyd: Int. Mater. Rev.39 (1994) 123.10.1179/095066094790150982Search in Google Scholar

[8] M.F.Ashby: Philos. Mag.21 (1970) 399424. 10.1080/1478643700823842610.1080/14786437008238426Search in Google Scholar

[9] N.A.Fleck, G.M.Muller, M.F.Ashby, J.W.Hutchinson: Acta Metall. Mater.42 (1994) 475487. 10.1016/0956-7151(94)90502-910.1016/0956-7151(94)90502-9Search in Google Scholar

[10] E.C.Aifantis: Int. J. Plasticity3 (1987) 211247. 10.1016/0749-6419(87)90021-010.1016/0749-6419(87)90021-0Search in Google Scholar

[11] N.A.Fleck, J.W.Hutchinson: J. Mech. Phys. Solids49 (2001) 22452271. 10.1016/S0022-5096(01)00049-710.1016/S0022-5096(01)00049-7Search in Google Scholar

[12] E.P.Busso, F.T.Meissonnier, N.P.O'Dowd: J. Mech. Phys. Solids48 (2000) 23332361. 10.1016/S0022-5096(00)00006-510.1016/S0022-5096(00)00006-5Search in Google Scholar

[13] A.J.Beaudoin, A.Acharya, S.R.Chen, D.A.Korzekwa, M.G.Stout: Acta Mater.48 (2000) 34093423. 10.1016/S1359-6454(00)00136-110.1016/S1359-6454(00)00136-1Search in Google Scholar

[14] A.Arsenlis, D.M.Parks: J. Mech. Phys. Solids50 (2002) 19792009. 10.1016/S0022-5096(01)00134-X10.1016/S0022-5096(01)00134-XSearch in Google Scholar

[15] F.T.Meissonnier, E.P.Busso, N.P.O'Dowd: Int. J. Plasticity17 (2001) 601640. 10.1016/S0749-6419(00)00064-410.1016/S0749-6419(00)00064-4Search in Google Scholar

[16] K.S.Cheong, E.P.Busso, A.Arsenlis: Int. J. Plasticity21 (2005) 17971814. 10.1016/j.ijplas.2004.11.00110.1016/j.ijplas.2004.11.001Search in Google Scholar

[17] E.Van Der Giessen, A.Needleman: Model. Simul. Mater. Sc.3 (1995) 689735. 10.1088/0965-0393/3/5/00810.1088/0965-0393/3/5/008Search in Google Scholar

[18] V.S.Deshpande, A.Needleman, E.Van Der Giessen: J. Mech. Phys. Solids51 (2003) 20572083. 10.1016/j.jmps.2003.09.01210.1016/j.jmps.2003.09.012Search in Google Scholar

[19] V.V.Bulatov, W.Cai: Computer Simulations of Dislocations, Oxford University Press, Oxford (2006).10.1093/oso/9780198526148.001.0001Search in Google Scholar

[20] V.V.Bulatov, L.L.Hsiung, M.Tang, A.Arsenlis, M.C.Bartelt, W.Cai, J.N.Florando, M.Hiratani, M.Rhee, G.Hommes: Nature440 (2006) 11741178. 16641992; 10.1038/nature0465810.1038/nature04658Search in Google Scholar PubMed

[21] A.Arsenlis, W.Cai, M.Tang, M.Rhee, T.Oppelstrup, G.Hommes, T.G.Pierce, V.V.Bulatov: Model. Simul. Mater. Sc.15 (2007) 553596. 10.1088/0965-0393/15/6/00110.1088/0965-0393/15/6/001Search in Google Scholar

[22] A.J.Wilkinson, G.Meaden, D.J.Dingley: Ultramicroscopy106 (2006) 307313. 16324788; 10.1016/j.ultramic.2005.10.00110.1016/j.ultramic.2005.10.001Search in Google Scholar PubMed

[23] A.J.Wilkinson, G.Meaden, D.J.Dingley: Mater. Sci. Tech. Ser.22 (2006) 12711278. 10.1179/174328406X13096610.1179/174328406X130966Search in Google Scholar

[24] R.I.Barabash, G.E.Ice, B.C.Larson, G.M.Pharr, K.S.Chung, W.Yang: Appl. Phys. Lett.79 (2001) 749751. 10.1063/1.138932110.1063/1.1389321Search in Google Scholar

[25] R.I.Barabash, G.E.Ice, F.J.Walker: J. Appl. Phys.93 (2003) 14571464. 10.1063/1.153437810.1063/1.1534378Search in Google Scholar

[26] R.I.Barabash, G.E.Ice, J.W.L.Pang: Mat. Sci. Eng. A–Struct.400–401 (2005) 125131.10.1016/j.msea.2005.03.036Search in Google Scholar

[27] O.Robach, J.S.Micha, O.Ulrich, P.Gergaud: J. Appl. Crystallogr.44 (2011) 688696. 10.1107/S002188981102320X10.1107/S002188981102320XSearch in Google Scholar

[28] J.D.Budai, W.Yang, N.Tamura, J.S.Chung, J.Z.Tischler, B.C.Larson, G.E.Ice, C.Park, D.P.Norton: Nat. Mater.2 (2003) 487492. 12792647; 10.1038/nmat91610.1038/nmat916Search in Google Scholar

[29] H.Yan, I.C.Noyan: J. Appl. Phys.98 (2003) 0735276. 10.1063/1.207145410.1063/1.2071454Search in Google Scholar

[30] F.Hofmann, X.Song, I.Dolbnya, B.Abbey, A.M.Korsunsky: Procedia Engineering1 (2009): 193196. 10.1016/j.proeng.2009.06.04510.1016/j.proeng.2009.06.045Search in Google Scholar

[31] N.Tamura, A.A.Macdowell, R.Spolenak, B.C.Valek, J.C.Bravman, W.L.Brown, R.S.Celestre, H.A.Padmore, B.W.Batterman, J.R.Patel: J. Synchrotron Radiat.10 (2003) 137143. 12606791; 10.1107/S090904950202136210.1107/S0909049502021362Search in Google Scholar

[32] R.Spolenak, W.L.Brown, N.Tamura, A.A.Macdowell, R.S.Celestre, H.A.Padmore, B.C.Valek, J.C.Bravman, T.Marieb, H.Fujimoto, B.W.Batterman, J.R.Patel: Phys. Rev. Lett.90 (2003) 096102. 12689241; 10.1103/PhysRevLett.90.09610210.1103/PhysRevLett.90.096102Search in Google Scholar

[33] W.J.Choi, T.Y.Lee, K.N.Tu, N.Tamura, R.S.Celestre, A.A.Macdowell, Y.Y.Bong, L.Nguyen: Acta Mater.51 (2003) 62536261. 10.1016/S1359-6454(03)00448-810.1016/S1359-6454(03)00448-8Search in Google Scholar

[34] R.I.Barabash, G.E.Ice, N.Tamura, B.C.Valek, J.C.Bravman, R.Spolenak, J.R.Patel: Microelectron. Eng.75 (2004) 2430. 10.1016/j.mee.2003.09.00910.1016/j.mee.2003.09.009Search in Google Scholar

[35] R.Maass, S.Van Petegem, J.Zimmermann, C.N.Borca, H.Van Swygenhoven: Scripta Mater.59 (2008) 471474. 10.1016/j.scriptamat.2008.04.03410.1016/j.scriptamat.2008.04.034Search in Google Scholar

[36] R.Maass, S.Van Petegem, D.Grolimund, H.Van Swygenhoven, D.Kiener, G.Dehm: Appl. Phys. Lett.92 (2008) 0719053. 10.1063/1.288468810.1063/1.2884688Search in Google Scholar

[37] H.Mimura, S.Handa, T.Kimura, H.Yumoto, D.Yamakawa, H.Yokoyama, S.Matsuyama, K.Inagaki, K.Yamamura, Y.Sano, K.Tamasaku, Y.Nishino, M.Yabashi, T.Ishikawa, K.Yamauchi: Nat. Phys.6 (2010) 122125. 10.1038/nphys145710.1038/nphys1457Search in Google Scholar

[38] W.Yang, B.C.Larson, J.Z.Tischler, G.E.Ice, J.D.Budai, W.Liu: Micron35 (2004) 431439. 15120127; 10.1016/j.micron.2004.02.004Search in Google Scholar

[39] B.C.Larson, W.Yang, J.Z.Tischler, G.E.Ice, J.D.Budai, W.Liu, H.Weiland: Int. J. Plasticity20 (2004) 543560. 10.1016/S0749-6419(03)00101-310.1016/S0749-6419(03)00101-3Search in Google Scholar

[40] H.Bei, R.I.Barabash, G.E.Ice, W.Liu, J.Z.Tischler, E.P.George: Appl. Phys. Lett.93 (2008) 0719043. 10.1063/1.297537110.1063/1.2975371Search in Google Scholar

[41] G.E.Ice, B.C.Larson, W.Yang, J.D.Budai, J.Z.Tischler, J.W.L.Pang, R.I.Barabash, W.Liu: J. Synchrotron Radiat.12 (2005) 155162. 15728967; 10.1107/S090904950402694910.1107/S0909049504026949Search in Google Scholar

[42] R.I.Barabash, O.M.Barabash, G.E.Ice, S.A.David, Z.Feng, J.A.HortonJr: Rev. Adv. Mater. Sci.15 (2007) 4955.Search in Google Scholar

[43] F.Hofmann, X.Song, T.S.Jun, B.Abbey, M.Peel, J.Daniels, V.Honkimäki, A.M.Korsunsky: Mater. Lett.64 (2010) 13021305. 10.1016/j.matlet.2010.03.01410.1016/j.matlet.2010.03.014Search in Google Scholar

[44] N.Tamura, R.S.Celestre, A.A.Macdowell, H.A.Padmore, R.Spolenak, B.C.Valek, N.M.Chang, A.Manceau, J.R.Patel: Submicron x-ray diffraction and its applications to problems in materials and environmental science, in: Papers from the 12th National Synchrotron Radiation Instrumentation Conference, Madison, Wisconsin (2002).Search in Google Scholar

[45] F.Hofmann: DPhil Thesis, University of Oxford, Oxford (2011).Search in Google Scholar

[46] S.Sun, B.L.Adams, W.E.King: Phil. Mag. A80 (2000) 925. 10.1080/0141861000821203810.1080/01418610008212038Search in Google Scholar

[47] M.Déchamps, F.Baribier, A.Marrouche: Acta Metall. Mater.35 (1987) 101107. 10.1016/0001-6160(87)90217-310.1016/0001-6160(87)90217-3Search in Google Scholar

[48] F.Hofmann, S.Eve, J.P.Belnoue, J.S.Micha, A.M.Korsunsky: Nucl. Instrum. Meth. A660 (2011) 130137. 10.1016/j.nima.2011.09.00910.1016/j.nima.2011.09.009Search in Google Scholar

[49] H.F.Poulsen, S.F.Nielsen, E.M.Lauridsen, S.Schmidt, R.M.Suter, U.Lienert, L.Margulies, T.Lorentzen, D.Juul Jensen: J. Appl. Crystallogr.34 (2001) 751756. 10.1107/S002188980101427310.1107/S0021889801014273Search in Google Scholar

[50] S.F.Nielsen, E.M.Lauridsen, D.Juul Jensen, H.F.Poulsen: Mat. Sci. Eng. A–Struct.319–321 (2001) 179181.10.1016/S0921-5093(01)01056-5Search in Google Scholar

[51] W.Ludwig, S.Schmidt, E.M.Lauridsen, H.F.Poulsen: J. Appl. Crystallogr.41 (2008) 302309. 10.1107/S002188980800168410.1107/S0021889808001684Search in Google Scholar

[52] G.Johnson, A.King, M.G.Honnicke, J.Marrow, W.Ludwig: J. Appl. Crystallogr.41 (2008) 310318. 10.1107/S002188980800172610.1107/S0021889808001726Search in Google Scholar

[53] S.S.West, S.Schmidt, H.O.Srensen, G.Winther, H.F.Poulsen, L.Margulies, C.Gundlach, D.Juul Jensen: Scripta Mater.61 (2009) 875878. 10.1016/j.scriptamat.2009.07.02710.1016/j.scriptamat.2009.07.027Search in Google Scholar

[54] A.M.Korsunsky, N.Baimpas, X.Song, J.P.Belnoue, F.Hofmann, B.Abbey, M.Xie, J.Andrieux, T.Buslaps, T.K.Neo: Acta Mater.59 (2011) 25012513. 10.1016/j.actamat.2010.12.05410.1016/j.actamat.2010.12.054Search in Google Scholar

Received: 2011-7-13
Accepted: 2011-11-4
Published Online: 2013-05-31
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Downloaded on 29.3.2023 from
Scroll Up Arrow