Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

3D image analysis and stochastic modelling of open foams

André Liebscher and Claudia Redenbach


We present methods for the geometric characterisation and stochastic modelling of open foams based on tomographic 3D image data. In the first step, geometric characteristics of the foam microstructure are estimated from the image. Using these characteristics, a random tessellation model is fitted to the cell system of the foam. The edges of this tessellation then serve as a skeleton for the foam's strut system. The focus of the paper is on the correct simulation of the foam's locally varying strut thickness in the model. For this purpose, the local strut thickness and the strut profiles are estimated from the image and reproduced in the model using locally adaptable morphology.

* Correspondence address Dr. Claudia Redenbach, University of Kaiserslautern, Mathematics Department, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany, Tel.: +49 631 205 36 20, Fax: +49 631 205 27 48, E-mail:


[1] J.Banhart: Prog. Mater. Sci.46 (2001) 559. 10.1016/S0079-6425(00)00002-510.1016/S0079-6425(00)00002-5Search in Google Scholar

[2] S.Kanaun, O.Tkachenko: Int. J. Fracture140 (2006) 305. 10.1007/s10704-006-0112-510.1007/s10704-006-0112-5Search in Google Scholar

[3] S.Kanaun, O.Tkachenko: Int. J. Eng. Sci.46 (2008) 551. 10.1016/j.ijengsci.2008.01.01210.1016/j.ijengsci.2008.01.012Search in Google Scholar

[4] O.Cuisenaire: Pattern Recogn.39 (2006) 405. 10.1016/j.patcog.2005.07.00910.1016/j.patcog.2005.07.009Search in Google Scholar

[5] C.Lautensack, M.Giertzsch, M.Godehardt, K.Schladitz: J. Microsc.230 (2008) 396. 10.1111/j.1365-2818.2008.01998.x10.1111/j.1365-2818.2008.01998.xSearch in Google Scholar PubMed

[6] R.Schneider, W.Weil: Stochastic and Integral Geometry, Springer, Heidelberg (2008). 10.1007/978-3-540-78859-110.1007/978-3-540-78859-1Search in Google Scholar

[7] H.Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Heidelberg (1957).10.1007/978-3-642-94702-5Search in Google Scholar

[8] J.Ohser, K.Schladitz. 3d Images of Materials Structures–Processing and Analysis, Wiley-VCH, Weinheim (2009).10.1002/9783527628308Search in Google Scholar

[9] D.Stoyan, W.S.Kendall, J.Mecke: Stochastic Geometry and Its Applications, John Wiley & Sons, Chichester (1995).Search in Google Scholar

[10] Fraunhofer ITWM: MAVI – Modular Algorithms for Volume Images, 2005.Search in Google Scholar

[11] J.Plateau: Statique Expérimentale et Théorique des Liquides soumis aux Seules Forces Moléculaires, Gauthier (1873).Search in Google Scholar

[12] F.Aurenhammer: Discrete Comput. Geom.2 (1987) 49. 10.1007/BF0218787010.1007/BF02187870Search in Google Scholar

[13] C.Lautensack, S.Zuyev: Adv. Appl. Probab.40 (2008) 630. 10.1239/aap/122286817910.1239/aap/1222868179Search in Google Scholar

[14] K.Schladitz, C.Redenbach, T.Sych, M.Godehardt: Meth. Comput. Appl. Probab. 10.1007/s11009-010-9208-5Search in Google Scholar

[15] P.Soille: Morphological image analysis, Springer (1999).10.1007/978-3-662-03939-7Search in Google Scholar

[16] F.B.Tek, A.G.Dempster, I.Kale, in: C.Ronse, L.Najman, and E.Decencière (Eds.), Computational Imaging and Vision, Vol. 30, Springer (2005) 441.10.1007/1-4020-3443-1_40Search in Google Scholar

[17] J.Serra: Image Analysis and Mathematical Morphology, Academic Press, London (1982).Search in Google Scholar

[18] J.Chaussard, M.Couprie, H.Talbot: Pattern Recogn. Lett.32 (2010) 1384. 10.1016/j.patrec.2010.09.00210.1016/j.patrec.2010.09.002Search in Google Scholar

[19] M.Couprie, D.Coeurjolly, R.Zrour: Image Vision Comput.25 (2007) 1543. 10.1016/j.imavis.2006.06.02010.1016/j.imavis.2006.06.020Search in Google Scholar

[20] A.Liebscher, C.Redenbach: Statistical analysis of the local strut thickness of open cell foams, in preparation.Search in Google Scholar

[21] J.Illian, A.Penttinen, H.Stoyan, D.Stoyan: Statistical Analysis and Modelling of Spatial Point Patterns, John Wiley & Sons, Chichester (2008).Search in Google Scholar

[22] A.Bezrukov, M.Bargiel, D.Stoyan: Part. Syst. Charact.19 (2001) 111. 10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-MSearch in Google Scholar

[23] K.Sugihara: Theor. Comput. Sci.235 (2000) 325. 10.1016/S0304-3975(99)00202-910.1016/S0304-3975(99)00202-9Search in Google Scholar

[24] C.Redenbach, in V.Capasso et al. (Eds.), The MIRIAM Project Series, Vol. 4, ESCULAPIO Pub. Co., Bologna (2009) 51.Search in Google Scholar

[25] C.Redenbach: Comp. Mater. Sci.44 (2009) 1397. 10.1016/j.commatsci.2008.09.01810.1016/j.commatsci.2008.09.018Search in Google Scholar

[26] W.-Y.Jang, A.Kraynik, S.Kyriakides: Int. J. Solids Struct.45 (2008) 1845. 10.1016/j.ijsolstr.2007.10.00810.1016/j.ijsolstr.2007.10.008Search in Google Scholar

[27] C.Redenbach, O.Wirjadi, S.Rief, A.Wiegmann: Adv. Eng. Mater.13 (2011) 171. 10.1002/adem.20100022210.1002/adem.201000222Search in Google Scholar

[28]∼coupriem/es/.Search in Google Scholar

Received: 2011-7-21
Accepted: 2011-10-24
Published Online: 2013-05-31
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Downloaded on 28.1.2023 from
Scroll Up Arrow