Abstract
Percolation is an important property of porous media, as it describes the connectivity of pores. We propose a novel, direction-dependent percolation probability which can be efficiently estimated from three-dimensional images obtained by microtomography. Furthermore, in order to describe the penetrability of the pore space by particles of a given diameter or a fluid of a given surface tension, we introduce a percolation probability depending on the width of the pores, from which we may also derive a measure of the mean pore channel width. As application examples, we consider the penetrability of porous beryllium pebbles, the connectivity of pores in arctic firn, the percolation of the pore space of aluminum foams and the mean width of the percolating space between the fibers in a laminate's percolating pore space.
References
[1] I.Tiseanu, E.Tsitrone, A.Kreter, T.Craciunescu, T.Loarer, B.Pégourié, T.Dittmar: Fusion Eng. Design86 (2011) 1646. 10.1016/j.fusengdes.2011.04.07910.1016/j.fusengdes.2011.04.079Search in Google Scholar
[2] L.Andersson, A.C.Jones, M.A.Knackstedt, L.Bergström: Acta Mater.59 (2011) 1239. 10.1016/j.actamat.2010.10.05610.1016/j.actamat.2010.10.056Search in Google Scholar
[3] Z.Jiang, K.Wu, G.D.Gouples, J.Ma: Adv. Eng. Mat.13 (2011) 208. 10.1002/adem.20100025510.1002/adem.201000255Search in Google Scholar
[4] C.-O.Hwang, A.G.James, M.Mascagni: Phys. Fluids12 (2000) 1699. 10.1063/1.87042010.1063/1.870420Search in Google Scholar
[5] F.Romm: J. Colloid Interf. Sci.250 (2002) 191. 10.1006/jcis.2002.833310.1006/jcis.2002.8333Search in Google Scholar
[6] F.Romm: Adv. Colloid Interf. Sci.99 (2002) 1. 10.1016/S0001-8686(01)00096-310.1016/S0001-8686(01)00096-3Search in Google Scholar
[7] S.Torquato: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, New York (2002).10.1007/978-1-4757-6355-3Search in Google Scholar
[8] A.Hunt: Percolation Theory for Flow in Porous Media, Lecture Notes in Physics. Springer, New York (2005).10.1007/b136727Search in Google Scholar
[9] R.Hilfer, T.Rage, B.Virgin: Physica A241 (1997) 105. 10.1016/S0378-4371(97)00067-810.1016/S0378-4371(97)00067-8Search in Google Scholar
[10] B.Biswal, C.Manwart, R.Hilfer: Physika A (1998) 255.10.1016/S0378-4371(98)00111-3Search in Google Scholar
[11] A.Moeslang, R.A.Pieritz, B.Boller, C.Ferrero: J. Nucl. Mat.386–388 (2009) 1052. 10.1016/j.jnucmat.2008.12.25810.1016/j.jnucmat.2008.12.258Search in Google Scholar
[12] T.Weitkamp, P.Tafforeau, E.Boller, P.Cloetens, J.-P.Valade, P.Bernard, F.Peyrin, W.Ludwig, L.Helfen, J.Baruchel, in: Vol. 1221 of AIP Conf. Proc. (ICXOM20) (2010) 33.Search in Google Scholar
[13] R.A.Pieritz, J.Reimann, C.Ferrero: Adv. Eng. Mat.13 (2011) 145. 10.1002/adem.20100025610.1002/adem.201000256Search in Google Scholar
[14] J.-M.Barnola, R.A.Pieritz, C.Goujon, P.Duval, E.Boller, in: Proc. XIII Glaciological Symposium, St. Petersburg, Russia (2004).Search in Google Scholar
[15] A.Rack, L.Helfen, T.Baumbach, S.Kirste, J.Banhart, K.Schladitz, J.Ohser: J. Microsc.232 (2008) 282. 10.1111/j.1365-2818.2008.02100.x10.1111/j.1365-2818.2008.02100.xSearch in Google Scholar
[16] A.Rack, H.-M.Helwig, A.Bütow, A.Rueda, B.Matijašević-Lux, L.Helfen, J.Goebbels, J.Banhart: Acta Mater.57 (2009) 4809. 10.1016/j.actamat.2009.06.04510.1016/j.actamat.2009.06.045Search in Google Scholar
[17] J.Banhart: Progress Mat. Sci.46 (2001) 559. 10.1016/S0079-6425(00)00002-510.1016/S0079-6425(00)00002-5Search in Google Scholar
[18] A.Rack, S.Zabler, B.R.Müller, H.Riesemeier, G.Weidemann, A.Lange, J.Goebbels, M.Hentschel, W.Görner: Nucl. Instr. & Meth. in Phys. Res. A586 (2008) 327.10.1016/j.nima.2007.11.020Search in Google Scholar
[19] G.Rieber, W.Wirjadi, P.Mitschang, in: Proc. 10th International Conference on Flow Processes in Composite Materials (FPCM10), Monte Veritá, Ascona, CH (2010) 23.Search in Google Scholar
[20] J.Ohser, W.Nagel, K.Schladitz: Image Anal. Stereol.28 (2009) 77. 10.5566/ias.v28.p77-9210.5566/ias.v28.p77-92Search in Google Scholar
[21] J.Ohser, K.Schladitz: 3D Images of Materials Structures – Processing and Analysis, Wiley VCH, Weinheim, Berlin (2009).10.1002/9783527628308Search in Google Scholar
[22] M.Martín-Herrero: Machine Vision Appl.18 (2007) 1.10.1007/s00138-006-0041-3Search in Google Scholar
[23] K.Sandfort, J.Ohser: Image Anal. Stereol.28 (2009) 45. 10.1007/s00138-006-0041-310.5566/ias.v28.p45-61Search in Google Scholar
[24] C.R.Maurer, R.Raghavan: IEEE Trans. Pattern Analys. Machine Intelli.25 (2003) 265. 10.1109/TPAMI.2003.117715610.1109/TPAMI.2003.1177156Search in Google Scholar
[25] Fraunhofer ITWM, Department of Image Processing, MAVIlib – modular algorithms for volume images, C++ library, http://www.mavi-3d.de (2011).Search in Google Scholar
[26] E.Rabaglino, J.Baruchel, E.Boller, A.Elmoutaouakkil, C.Ferrero, C.Ronchi, T.Wiss: Nucl. Instr. Meth. in Phys. Res. B200 (2003) 352.10.1016/S0168-583X(02)01700-7Search in Google Scholar
[27] G.Rieber, P.Mitschang: Composites Part A: Appl. Sci. Manufacturing41 (2010) 2. 10.1016/j.compositesa.2009.09.00610.1016/j.compositesa.2009.09.006Search in Google Scholar
© 2012, Carl Hanser Verlag, München