Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

Morpho-topological volume analysis of porous materials for nuclear applications

  • Romeu Pieritz , José Spino , Pavel Vladimirov and Claudio Ferrero


The filtered medial line operator is a methodological tool for the morphological and topological analysis of reconstructed samples exhibiting either a porosity network or a granular structure such as bead packs. An application example of this methodology is the evaluation of the pore structure and the derived topological parameters of nanocrystalline 4Y-ZrO2 specimens simulating the high burn-up structure of UO2 fuel. The data indicate the absence of percolation paths at the experimental resolution, which is a beneficial property in terms of retaining fission gasses during the in-pile operation of the fuel. Furthermore, the analysis revealed a tendency for pore coalescence, which could explain the departure from the ideal behaviour of some physical properties typical of material matrices with a population of merely spherical pores. The same analytical tool is also used to characterise the porosity network created by gas bubbles in neutron irradiated beryllium samples, a material meant to be used for the blanket of the forthcoming generation of Tokamak fusion reactors. In particular, the preliminary results of the quantitative analysis performed on the porosity of the beryllium matrix as well as the initial investigation of its percolation properties are reported.

* Correspondence address Dr. Claudio Ferrero, ESRF, BP 220 – F-38043 Grenoble cedex, France, Tel.: + 33 476 882 370, Fax: + 33 476 882 542, E-mail:


[1] R.A.Pieritz: Development of the Medial Line Graphics and the Connected Region Threshold Techniques Applied to the Geometrical Porous Media Characterization, Master in Sciences and Engineering Thesis, Federal University of Santa Catarina, Brazil (1994).Search in Google Scholar

[2] R.A.Pieritz: Modélisation et Simulation de Milieux Poreux par Réseaux Topologiques, PhD Thesis, Université Joseph Fourier, Grenoble (1998).Search in Google Scholar

[3] J.Spino, J.Rest, W.Goll, C.T.Walker: J. Nucl. Mater.346 (2005) 131. 10.1016/j.jnucmat.2005.06.01510.1016/j.jnucmat.2005.06.015Search in Google Scholar

[4] J.Spino, A.D.Stalios, H.Santa Cruz, D.Baron: J. Nucl. Mater.354 (2006) 66. 10.1016/j.jnucmat.2006.02.09510.1016/j.jnucmat.2006.02.095Search in Google Scholar

[5] E.Rabaglino, C.Ronchi, A.Cardella: Fusion Eng. Des.69 (2003) 455. 10.1016/S0920-3796(03)00393-410.1016/S0920-3796(03)00393-4Search in Google Scholar

[6] E.Rabaglino, J.Baruchel, E.Boller, A.Elmoutaouakkil, C.Ferrero, C.Ronchi, T.Wiss: Nucl. Instrum. Meth. B200 (2003) 352. 10.1016/S0168-583X(02)01700-710.1016/S0168-583X(02)01700-7Search in Google Scholar

[7] R.A.Pieritz, J.Reimann, C.Ferrero: Adv. Eng. Mater.13 (2011) 145. 10.1002/adem.20100025610.1002/adem.201000256Search in Google Scholar

[8] F.Flin, R.A.Pieritz, J.B.Brzoska, D.Coeurjolly, B.Lesaffre, C.Coléou, P.Lamboley, O.Teytaud, G.Vignoles, J.F.Delesse: IEEE Trans. Image Proc.14 (2005) 585. 10.1109/TIP.2005.84602110.1109/TIP.2005.846021Search in Google Scholar PubMed

[9] J.M.Barnola, R.A.Pieritz, C.Goujon, P.Duval, E.Boller: Proc. XIII Glaciological Symposium, St. Petersburg, Russia (2004) 80.Search in Google Scholar

[10] J.W.Essam: Rep. Prog. Phys.43 (1980) 833. 10.1088/0034-4885/43/7/00110.1088/0034-4885/43/7/001Search in Google Scholar

[11] D.Stauffer, A.Aharony: Introduction to Percolation Theory, Taylor & Francis, London (1994).Search in Google Scholar

[12] A.Kantzas, I.Chatzis: Chem. Eng. Comm., 69 (1988) 191. 10.1080/0098644880894061210.1080/00986448808940612Search in Google Scholar

[13] J.M.Chassery, A.Montanvert: Géométrie discrète en analyse d'images, Hermes, Paris (1991).Search in Google Scholar

[14] J.B.Brzoska, B.Lesaffre, C.Coléou, K.Xu, R.A.Pieritz: Eur. Phys. J. AP7 (1999) 45. 10.1051/epjap:199919810.1051/epjap:1999198Search in Google Scholar

[15] J.Reimann, R.A.Pieritz, M.Di Michiel, C.Ferrero: Fus. Eng. Design75–79 (2005) 1049. 10.1016/j.fusengdes.2005.06.22310.1016/j.fusengdes.2005.06.223Search in Google Scholar

[16] J.Reimann, R.A.Pieritz, M.Di Michiel, C.Ferrero, R.Rolli: Fus. Eng. Design83 (2008) 1326. 10.1016/j.fusengdes.2008.06.02610.1016/j.fusengdes.2008.06.026Search in Google Scholar

[17] A.Möslang, R.A.Pieritz, E.Boller, C.Ferrero: J. Nucl. Mat.386–388 (2009) 1052. 10.1016/j.jnucmat.2008.12.258Search in Google Scholar

[18] T.Weitkamp, P.Tafforeau, E.Boller, P.Cloetens, J.-P.Valade, P.Bernard, F.Peyrin, W.Ludwig, L.Helfen, J.Baruchel: AIP Conf. Proc. (ICXOM20) 1221 (2010) 33.10.1063/1.3399253Search in Google Scholar

[19] S.Chilingaryan, A.Mirone, A.Hammersley, C.Ferrero, L.Helfen, A.Kopmann, T.dos Santos Rolo, P.Vagovic: IEEE Trans. Nucl. Science58 (2011) 1447. 10.1109/TNS.2011.214168610.1109/TNS.2011.2141686Search in Google Scholar

[20] H.Santa Cruz, J.Spino, G.Grathwohl: J. Eur. Cer. Soc.28 (2008) 1783. 10.1016/j.jeurceramsoc.2007.12.02810.1016/j.jeurceramsoc.2007.12.028Search in Google Scholar

[21] J.Ohser, C.Ferrero, A.Rack, O.Wirjadi, A.Kuznetsova, J.Düll: Int. J. Mat. Res., 103 (2012) 184.10.3139/146.110669Search in Google Scholar

[22] A.Leenaers, G.Verpoucke, A.Pellettieri, L.Sannen, S.Van den Berghe: J. Nucl. Mater.372 (2008) 256. 10.1016/j.jnucmat.2007.03.21410.1016/j.jnucmat.2007.03.214Search in Google Scholar

Received: 2011-8-5
Accepted: 2011-11-14
Published Online: 2013-05-31
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Downloaded on 29.3.2023 from
Scroll Up Arrow