Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

In-situ X-ray microtomography study of the movement of a granular material within a die

Samuel A. McDonald , David Harris and Philip J. Withers


Optimising the manufacture of powder-processed components requires an understanding of the 3-D movement and behaviour of granular materials during processing. X-ray microtomography has been employed to study the 3-D flow behaviour of a metallic powder in-situ within a die as a function of the displacement of a punch into the die. In particular, the powder transfer behaviour for various open and closed die/punch geometries has been compared, including situations where features exist within the die and on the punch, cases where the die is both open and closed at the top, and finally where the punch itself contains a groove in the centre providing a gap into which powder can flow. Digital image correlation (DIC) has enabled the determination of local vector displacements of powder around the features within the die cavity as a function of punch movement and powder constraint to reveal bulk granular movement and densification. Zones of relatively stagnant flow are observed above a fixed insert within the die cavity, at the opening of a gap within a punch, and as a result of a closed die configuration, the latter showing transitions between the stagnant zones and much more mobile regions and the resulting powder compaction/dilation. As well as providing a means of developing practical die fill and compaction strategies that homogenise densification and thus improve product quality, the technique can also provide unique 3-D flow trajectories for model development.

* Correspondence address Dr. Samuel A. McDonald, School of Materials, Materials Science Building, University of Manchester, Manchester, M13 9PL, U.K., Tel.: +44 161 306 5890, E-mail:


[1] C.-Y.Wu, A.C.F.Cocks, O.T.Gillia, D.A.Thompson: Powder Technol.138 (2003) 216. 10.1016/j.powtec.2003.09.01110.1016/j.powtec.2003.09.011Search in Google Scholar

[2] C.-Y.Wu, A.C.F.Cocks: Mech. Mater.38 (2006) 304. 10.1016/j.mechmat.2005.08.00110.1016/j.mechmat.2005.08.001Search in Google Scholar

[3] O.Coube, A.C.F.Cocks, C.-Y.Wu: Powder Metall.48 (2005) 68. 10.1179/003258905X3758510.1179/003258905X37585Search in Google Scholar

[4] C.-Y.Wu, L.Dihoru, A.C.F.Cocks: Powder Technol.134 (2003) 24. 10.1016/S0032-5910(03)00130-X10.1016/S0032-5910(03)00130-XSearch in Google Scholar

[5] C.Demetry, F.S.Souto, B.C.Rydaen, J.M.Roy: Powder Technol.99 (1998) 119. 10.1016/S0032-5910(98)00094-110.1016/S0032-5910(98)00094-1Search in Google Scholar

[6] S.A.McDonald, L.C.R.Schneider, A.C.F.Cocks, P.J.Withers: Scr. Mater.54 (2006) 191. 10.1016/j.scriptamat.2005.09.04210.1016/j.scriptamat.2005.09.042Search in Google Scholar

[7] H.W.Chandler, C.M.Sands, J.H.Song, P.J.Withers, S.A.McDonald: Int. J. Solids Struct.45 (2008) 2056. 10.1016/j.ijsolstr.2007.11.02110.1016/j.ijsolstr.2007.11.021Search in Google Scholar

[8] A.C.F.Cocks, I.C.Sinka: Mech. Mater.39 (2007) 392. 10.1016/j.mechmat.2006.09.00310.1016/j.mechmat.2006.09.003Search in Google Scholar

[9] I.C.Sinka, A.C.F.Cocks: Mech. Mater.39 (2007) 404. 10.1016/j.mechmat.2006.09.00210.1016/j.mechmat.2006.09.002Search in Google Scholar

[10] A.C.F.Cocks: Prog. Mater. Sci.46 (2001) 201. 10.1016/S0079-6425(00)00017-710.1016/S0079-6425(00)00017-7Search in Google Scholar

[11] O.Coube, H.Riedel: Powder Metall.43 (2000) 123. 10.1179/00325890066587110.1179/003258900665871Search in Google Scholar

[12] N.A.Fleck: J. Mech. Phys. Solids43 (1995) 1409. 10.1016/0022-5096(95)00039-L10.1016/0022-5096(95)00039-LSearch in Google Scholar

[13] D.C.Drucker, W.Prager: Q. Appl. Math.10 (1952) 157.Search in Google Scholar

[14] A.J.M.Spencer: J. Mech. Phys. Solids12 (1964) 337. 10.1016/0022-5096(64)90029-810.1016/0022-5096(64)90029-8Search in Google Scholar

[15] A.Tordesillas, J.Shi: Q. J. Mech. Appl. Math.51 (1998) 633. 10.1093/qjmam/51.4.63310.1093/qjmam/51.4.633Search in Google Scholar

[16] B.Storakers, N.A.Fleck, R.M.McMeeking: J. Mech. Phys. Solids47 (1999) 785. 10.1016/S0022-5096(98)00076-310.1016/S0022-5096(98)00076-3Search in Google Scholar

[17] O.Skrinjar, P.-L.Larsson: Acta Mater.52 (2004) 1871. 10.1016/j.actamat.2003.12.02610.1016/j.actamat.2003.12.026Search in Google Scholar

[18] S.A.McDonald, N.Ravirala, P.J.Withers, A.Alderson: Scr. Mater.60 (2009) 232. 10.1016/j.scriptamat.2008.10.01310.1016/j.scriptamat.2008.10.013Search in Google Scholar

[19] S.A.McDonald, G.Dedreuil-Monet, Y.-T.Yao, A.Alderson, P.J.Withers: Phys. Status Solidi B248 (2011) 45. 10.1002/pssb.20108397510.1002/pssb.201083975Search in Google Scholar

[20] S.Roux, F.Hild, P.Viot, D.Bernard: Composites Part A39 (2008) 1253. 10.1016/j.compositesa.2007.11.01110.1016/j.compositesa.2007.11.011Search in Google Scholar

[21] B.K.Bay, T.S.Smith, D.P.Fyhrie, M.Saad: Exp. Mech.39 (1999) 217. 10.1007/BF0232355510.1007/BF02323555Search in Google Scholar

[22] E.Verhulp, B.van Rietbergen, R.Huiskes: J. Biomech.37 (2004) 1313. 15275838 10.1016/j.jbiomech.2003.12.03610.1016/j.jbiomech.2003.12.036Search in Google Scholar

[23] N.Limodin, J.Rethore, J.Y.Buffiere, A.Gravouil, F.Hild, S.Roux: Acta Mater.57 (2009) 4090. 10.1016/j.actamat.2009.05.00510.1016/j.actamat.2009.05.005Search in Google Scholar

[24] N.Limodin, J.Rethore, J.Y.Buffiere, F.Hild, S.Roux, W.Ludwig, J.Rannou, A.Gravouil: Acta Mater.58 (2010) 2957. 10.1016/j.actamat.2010.01.02410.1016/j.actamat.2010.01.024Search in Google Scholar

[25] S.A.McDonald, F.Motazedian, A.C.F.Cocks, P.J.Withers: Mater. Sci. Eng., A508 (2009) 64. 10.1016/j.msea.2009.02.00910.1016/j.msea.2009.02.009Search in Google Scholar

[26] K.Haldrup, S.F.Nielsen, J.A.Wert: Exp. Mech.48 (2008) 199. 10.1007/s11340-007-9079-z10.1007/s11340-007-9079-zSearch in Google Scholar

[27] S.F.Nielsen, H.F.Poulsen, F.Beckmann, C.Thorning, J.A.Wert: Acta Mater.51 (2003) 2407. 10.1016/S1359-6454(03)00053-310.1016/S1359-6454(03)00053-3Search in Google Scholar

[28] K.Haldrup, S.F.Nielsen, F.Beckmann, J.A.Wert: J. Microsc.222 (2006) 28. 16734711 10.1111/j.1365-2818.2006.01565.x10.1111/j.1365-2818.2006.01565.xSearch in Google Scholar PubMed

[29] C.-Y.Yang, X.-Y.Fu: Powder Technol.146 (2004) 10. 10.1016/j.powtec.2004.06.01110.1016/j.powtec.2004.06.011Search in Google Scholar

[30] L.A.Feldkamp, L.C.Davis, J.W.Kress: J. Opt. Soc. Am. A1 (1984) 612. 10.1364/JOSAA.1.00061210.1364/JOSAA.1.000612Search in Google Scholar

[31] J.Quinta Da Fonseca, P.M.Mummery, P.J.Withers: J. Microsc.218 (2005) 9. 15817059 10.1111/j.1365-2818.2005.01461.x10.1111/j.1365-2818.2005.01461.xSearch in Google Scholar PubMed

[32] B.Bay, T.S.Smith, D.P.Fyhrie: Exp. Mech.39 (1999) 217. 10.1007/BF0232355510.1007/BF02323555Search in Google Scholar

[33] W.F.Clocksin, J.Quinta Da Fonseca, P.J.Withers, P.H.S.Torr: Proc. SPIE4790 (2002) 384. 10.1117/12.45233410.1117/12.452334Search in Google Scholar

[34] A.M.Fincham, G.R.Spedding: Exp. Fluids23 (1997) 449. 10.1007/s00348005013510.1007/s003480050135Search in Google Scholar

[35] D.Harris: Acta Mech.146 (2001) 119. 10.1007/BF0124673310.1007/BF01246733Search in Google Scholar

[36] D.Harris, E.F.Grekova: J. Eng. Math.52 (2005) 107.Search in Google Scholar

[37] D.Harris, in: W.Wu, H.S.Yu (Eds.), Modern Trends in Geomechanics, Springer (2006) 329.10.1007/978-3-540-35724-7_20Search in Google Scholar

Received: 2011-8-16
Accepted: 2011-11-8
Published Online: 2013-05-31
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Downloaded on 30.1.2023 from
Scroll Up Arrow