Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Influence of Mg/Si ratio on the clustering kinetics in Al–Mg–Si alloys

  • Cynthia Sin Ting Chang , Zeqin Liang , Eric Schmidt and John Banhart

Abstract

The clustering kinetics of Al–Mg–Si alloys are studied by means of differential scanning calorimetry. Five alloys with different Mg and Si contents from 0.4 to 1.1 at.% are used. Two overlapping cluster peaks are observed in the heat flow curves; Cluster 1 (C1) situated at ≈50°C and Cluster 2 (C2) situated at around ≈80°C when heating at 10 K min−1. It was found that the heat effect of clustering is largest in alloys with Mg/Si close to 1, while the C1/C2 heat effect ratio depends on the Si content. Activation energies for the two clustering processes C1 and C2 are obtained by applying different evaluation methods. The alloy having an Mg/Si ratio close to 1 has the smallest initial activation energies for C1, while samples with higher Mg content have lower initial activation energies for C2, inferring that C1 is Si-related, whereas C2 is Mg-related. However, the entire clustering process requires both Mg and Si to proceed.


1 Correspondence address: Dr. Cynthia Sin Ting Chang, Institute of Materials Science and Technology, Technische Universität Berlin, Hardenbergstr. 36/EW 2–3, 10623, Berlin, Germany, Tel.: +4930806242053, Fax: +4930806243059, E-mail:

Refrences

[1]J.Hirsch: Mater. Sci. Forum242 (1997) 33. 10.4028/www.scientific.net/MSF.242.33Search in Google Scholar

[2]G.B.Burger, A.K.Gupta, P.W.Jeffrey, D.J.Lloyd: Mater. Charact.35 (1995) 23. 10.1016/1044-5803(95)00065-8Search in Google Scholar

[3]J.Banhart, C.S.TChang, Z.Liang, N.Wanderka, M.D.H.Lay, A.J.Hill: Adv. Eng. Mater.12 (2010) 559. 10.1002/adem.201000041Search in Google Scholar

[4]A.Serizawa, S.Hirosawa, T.Sato: Metall. Mater. Trans.A39 (2008) 243. 10.1007/s11661-007-9438-5Search in Google Scholar

[5]S.Pogatscher, H.Antrekowitsch, H.Leitner, T.Ebner, P.J.Uggowitzer: Acta Mater.59 (2011) 3352. 10.1016/j.actamat.2011.02.010Search in Google Scholar

[6]L.T.Stephenson, M.P.Moody, P.Liddicoat, S.P.Ringer: Microsc. Microanal.13 (2007) 448. 10.1017/S1431927607070900Search in Google Scholar PubMed

[7]N.Wanderka, N.Lazarev, C.S.T.Chang, J.Banhart: Ultramicroscopy111 (2010) 701. 10.1016/j.ultramic.2010.11.022Search in Google Scholar PubMed

[8]M.Torsæter, H.S.Hasting, W.Lefebvre, C.D.Marioara, J.C.Walmsley, S.J.Anderson, R.Holmestad: J. Appl. Phys., 108 (2010) 073527. 10.1063/1.3481090Search in Google Scholar

[9]C.S.T.Chang, J.Banhart: Metall. Mater. Trans.A42 (2011) 1960. 10.1007/s11661-010-0596-5Search in Google Scholar

[10]J.Banhart, M.D.H.Lay, C.S.T.Chang, A.J.Hill: Phys. Rev.83B (2011) 014101.10.1103/PhysRevB.83.014101Search in Google Scholar

[11]A.K.GuptaD.J.Lloyd: Metall. Mater. Trans.A30 (1999) 879.10.1007/s11661-999-0081-1Search in Google Scholar

[12]S.Esmaeili, X.Wang, D.J.Lloyd, W.J.Poole: Metall. Mater. Trans.A34 (2003) 751.Search in Google Scholar

[13]N.Maruyama, R.Uemori, N.Hashimoto, M.Saga, M.Kikuchi: Scr. Mater.36 (1997) 89. 10.1016/S1359-6462(96)00358-2Search in Google Scholar

[14]C.Badini, F.Marino, A.Tomasi: J. Mater. Sci.26 (1991) 6279. 10.1007/BF02387805Search in Google Scholar

[15]K.Matsuda, S.Ikeno, H.Matsui, T.Sato, K.Terayama, Y.Uetani: Metall. Mater. Trans.A36 (2005) 2007. 10.1007/s11661-005-0321-ySearch in Google Scholar

[16]C.D.Mariora, S.J.Andersen, H.W.Zandbergen, R.Holmestad: Metall. Mater. Trans.36A (2005) 691.10.1007/s11661-005-0185-1Search in Google Scholar

[17]L.C.Doan, Y.Ohmori, K.Nakai: Mater. Trans JIM41 (2000) 300.Search in Google Scholar

[18]A.Gaber, M.A.Gaffar, M.S.Mostafa, E.F.Abo Zeid: J. Alloys Compd.429 (2007) 167. 10.1016/j.jallcom.2006.04.021Search in Google Scholar

[19]M.J.Starink: Thermochim. Acta404 (2003) 163. 10.1016/S0040-6031(03)00144-8Search in Google Scholar

[20]J.Šesták, V.Šatava, W.W.Wendlandt: Thermochim. Acta7 (1973) 447. 10.1016/0040-6031(73)87025-XSearch in Google Scholar

[21]E.J.Mittemeijer: J. Mater. Sci.27 (1992) 3977. 10.1007/BF01105093Search in Google Scholar

[22]H.L.Friedman: J. Polym. Sci.C6 (1964) 183.10.1002/polc.5070060121Search in Google Scholar

[23]G.O.Piloyan, I.D.Ryabchikov, O.S.Novikova: Nature (1966) 1229. 10.1038/2121229a0Search in Google Scholar

[24]H.E.Kissinger: J. Res. Nat. Bur. Stand.57 (1956) 217.10.6028/jres.057.026Search in Google Scholar

[25]H.E.Kissinger: Anal. Chem.29 (1957) 1702. 10.1021/ac60131a045Search in Google Scholar

[26]M.J.Starink: Thermochim. Acta288 (1996) 97. 10.1016/S0040-6031(96)03053-5Search in Google Scholar

[27]S.Hirosawa, F.Nakamura, T.Sato, T.Hoshino: J. JILM56 (2006) 621. 10.2464/jilm.56.621Search in Google Scholar

[28]C.Wolverton: Acta Mater.55 (2007) 5867. 10.1016/j.actamat.2007.06.039Search in Google Scholar

[29]M.Mantina, Y.Wang, L.Q.Chen, Z.K.Liu, C.Wolverton: Acta Mater.57 (2009) 4102. 10.1016/j.actamat.2009.05.006Search in Google Scholar

[30]I.Dutta, S.M.Allen: J. Mater. Sci. Lett.10 (1991) 323. 10.1007/BF00719697Search in Google Scholar

[31]A.Gaber, A.Mossad Ali, K.Matsuda, T.Kawabata, T.Yamazaki, S.Ikeno: J. Alloys Compd.432 (2007) 149. 10.1016/j.jallcom.2006.06.004Search in Google Scholar

[32]N.Afify, A.Gaber, M.S.Mostafa, Gh.Abbady: J. Alloys Compd.462 (2008) 80. 10.1016/j.jallcom.2007.08.043Search in Google Scholar

Received: 2011-11-7
Accepted: 2011-4-20
Published Online: 2013-06-11
Published in Print: 2012-08-01

© 2012, Carl Hanser Verlag, Munich

Downloaded on 25.2.2024 from https://www.degruyter.com/document/doi/10.3139/146.110796/html
Scroll to top button