In the present study, textured and highly oriented nano-structured ZnO films were synthesized via chemical bath deposition. The effects of solution temperature have been investigated. It is concluded that the solution temperature is crucial to the crystallography, morphology, electrical and optical behaviors of the ZnO films. X-ray diffraction studies and scanning electron microscopy observations revealed that the structures grown at 95°C had a large aspect ratio, a faster c-axis growth and better vertical orientation than those obtained at relatively lower temperature. The variations depending on solution temperature have been provisionally explained theoretically. Electrical resistivity and activation energies of the films decreased with increasing solution temperature. The variation was attributed to enhancement in the crystallographic structure with increasing growth temperature and to delocalized phonon states. Through the optical absorption spectra a red shift was observed and attributed to crystal defects, non-stochiometry that Zn+2 ions substitute oxygen vacancies and delocalized phonon states.
References
[1] BayansalF., KahramanS., ÇankayaG., ÇetinkaraH.A., GüderH.S., ÇakmakH.M.: J. Alloys Compd.509 (2011) 2094. 10.1016/j.jallcom.2010.10.146Search in Google Scholar
[2] MorkoçH., ÖzgürÜ.: Zine Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH, Weinheim (2004).15306067Search in Google Scholar
[3] KlingshirnC.: ChemPhysChem12 (2007) 782.1742981910.1002/cphc.200700002Search in Google Scholar
[4] NortonD.P., HeoY.W., IvillM.P., IpK., PeartonS.J., ChisholmM.F., SteinerT.: Mater. Today7 (2004) 34. 10.1016/S1369-7021(03)00052-XSearch in Google Scholar
[5] SaitoN., HanedaH., SekiguchiT., OhashiN., SakaguchiI., KoumotoK.: Adv. Mater.14 (2002) 418. 10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-KSearch in Google Scholar
[6] LiangS., ShengH., LiuY., HioZ., LuY., ShenH.: J. Cryst. Growth225 (2001) 110. 10.1016/S0022-0248(01)00830-2Search in Google Scholar
[7] HoffmanR.L., NorrisB.J., WagerJ.F.: Appl. Phys. Lett.82 (2003) 733. 10.1063/1.1542677Search in Google Scholar
[8] LokhandeC.D., GondkarP.M., ManeR.S., ShindeV.R., HanS.: J. Alloys Compd.475 (2009) 304. 10.1016/j.jallcom.2008.07.025Search in Google Scholar
[9] Sanchez-JuarezA., Tiburcio-SilverA., OrtizA.: Sol. Energy Mater. Sol. Cells52 (1998) 301. 10.1016/S0927-0248(97)00246-8Search in Google Scholar
[10] SunY., FugeG.M., FoxN.A., RileyD.J., AshfoldM.N.R.: Adv. Mater.17 (2005) 2477. 10.1002/adma.200400839Search in Google Scholar
[11] BaxterJ.B., AydilE.S.: J. Cryst. Growth274 (2005) 407. 10.1016/j.jcrysgro.2004.10.014Search in Google Scholar
[12] LiuS.C., WuJ.J.: J. Mater. Chem.12 (2002) 3125. 10.1039/b203871dSearch in Google Scholar
[13] KimH.S., LugoF., PeartonS.J., NortonD.P., WangY.L., RenF.: Appl. Phys. Lett.92 (2008) 112108. 10.1063/1.2828202Search in Google Scholar
[14] WangJ.M., GaoL.: J. Mater. Chem.13 (2003) 2551. 10.1039/b307565fSearch in Google Scholar
[15] YeJ.D., GuS.L., ZhuS.M., LiuW., LiuS.M., ZhangR., ShiY., ZhengY.D.: Appl. Phys. Lett.90 (2007) 174107. 10.1063/1.2433026Search in Google Scholar
[16] ZhangZ., MengG., XuQ., HuY., WuQ., HuZ.: J. Phys. Chem. C114 (2010) 189. 10.1021/jp100225cSearch in Google Scholar
[17] DobkinD.M., ZurawM.K.: Principles of Chemical Vapor Deposition Kluwer Academic Publishers, Dordrecht (2003).Search in Google Scholar
[18] RajamathiM., SeshadriR.: Curr. Opin. Solid State Mater. Sci.6 (2002) 337. 10.1016/S1359-0286(02)00029-3Search in Google Scholar
[19] MohamedG., El-MoizA.B., RashadM.: Physica B370 (2005) 158. 10.1016/j.physb.2005.09.006Search in Google Scholar
[20] HamadaT., ItoA., FujiiE., ChuD., KatoK., MasudaY.: J. Cryst. Growth311 (2009) 3687. 10.1016/j.jcrysgro.2009.06.004Search in Google Scholar
[21] QinZ., LiaoQ., HuangY., TangL., ZhangX., ZhangY.: Mater. Chem. Phys.123 (2010) 811. 10.1016/j.matchemphys.2010.05.065Search in Google Scholar
[22] CullityB.D., StockS.R.: Elements of X-ray Diffraction, Prentice-Hall Inc., Indiana (1956).Search in Google Scholar
[23] Suresh KumarP., DhayalRajA., MangalarajD., NatarajD., PonpandianN., LiLin, ChabrolG.: Appl. Surf. Sci.257 (2011) 6678. 10.1016/j.apsusc.2011.02.101Search in Google Scholar
[24] Van Der DriftA.: Evolutionary Selection, Philips Res. Rep.22 (1967) 267.Search in Google Scholar
[25] PodlogarM., RichardsonJ.J., VengustD., DaneuN., SamardzijaZ., BernikS., RecnikA.: Adv. Func. Mater.22 (2012) 3098. 10.1002/adfm.201200214Search in Google Scholar
[26] BloodP., OrtonJ.W.: The Electrical Characterization of SemiconductorsAcademic Press, London (1992).Search in Google Scholar
[27] OzgurU., AlivovY.I., LiuC., TekeA., ReshchikovM.A., DoganS., AvrutinV., ChoS.J., MorkocH.: J. Appl. Phys.98 (2005) 041301. 10.1063/1.1992666Search in Google Scholar
[28] GeorgeJ., RadhakrishnanM.K.: Solid State Commun.33 (1980) 987. 10.1016/0038-1098(80)90296-3Search in Google Scholar
[29] ÇaglarM., IlicanM., ÇaglarY., YakuphanogluF.: J. Alloys Compd.509 (2011) 3177. 10.1016/j.jallcom.2010.12.038Search in Google Scholar
[30] HongY.W., KimJ.H.: Ceram. Int.30 (2004) 1301. 10.1016/j.ceramint.2003.12.028Search in Google Scholar
[31] ÇakmakH.M., KahramanS., BayansalF., ÇetinkayaS.: Phil. Mag. Lett.92 (2012) 288. 10.1080/09500839.2012.661887Search in Google Scholar
[32] MusatV., FortunatoE., PuricaM., MaziluM., Botelho do RegoA.M., DiaconuB., BusaniT.: Mater. Chem. Phys.132 (2012) 339. 10.1016/j.matchemphys.2011.11.026Search in Google Scholar
[33] IlıcanS., ÇağlarM., ÇağlarY.: Appl. Surf. Sci.256 (2010) 7204. 10.1016/j.apsusc.2010.05.052Search in Google Scholar
[34] MuivaC.M., SathiarajT.S., MaabongK.: Ceram. Int.37 (2011) 555. 10.1016/j.ceramint.2010.09.042Search in Google Scholar
© 2013, Carl Hanser Verlag, München