Accessible Requires Authentication Published by De Gruyter February 18, 2013

Influence of the strain rate on deformation mechanisms of an AZ31 magnesium alloy

Zuzanka Trojanová, Tomáš Podrábský, Pavel Lukáč, Ronald W. Armstrong, Josef Pešička and Milan Forejt

The paper reports mechanical properties of magnesium alloy AZ31 deformed at low and high strain rates. Material was prepared using squeeze casting technology. Compression tests were performed at an initial strain rate of 8.3 × 10−5 s−1 at temperatures between room temperature and 300°C. Dynamic compression Hopkinson tests were carried out at room temperature with impact velocities ranging from 11.2 to 21.9 m s−1. Transmission electron microscopy investigations showed significant dislocation and twins densities. Results are discussed considering the importance of the activation volume determined in the stress relaxation tests obtained at the low strain rate and, quite separately, the importance of adiabatic shear banding at high strain rates.

e Correspondence address, Prof. RNDr. Z. Trojanová, DrSc, Department of Material Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2, Czech Republic, Tel.: +420 22191 1658, Fax: +420 22191 1458, E-mail:


[1] KapoorR., SinghJ.B., ChakravarttyJ.K.: Mater. Sci. Eng.A496 (2008) 308. 10.1016/j.msea.2008.05.043 Search in Google Scholar

[2] MeyersM.A., XuZ.B., XueQ., Perez-PradoM.T., McNelleyT.R.: Acta Mater.51 (2003) 1307. 10.1016/S1359-6454(02)00227-6 Search in Google Scholar

[3] DirrasaG., OuaremA., CouqueH., GubiczaJ., SzommerP., BrinzaO.: Mater. Characterization62 (2011) 480. 10.1016/j.matchar.2011.03.002 Search in Google Scholar

[4] da SilvaM.G., RameshK.T.: Mater. Sci. Eng.A232 (1997) 11. 10.1016/S0921-5093(97)00076-2 Search in Google Scholar

[5] LiQ.: J. Appl. Phys.109 (2011) 103414.2128624010.1063/1.3488880 Search in Google Scholar

[6] ArmstrongR.W., WalleyS.M.: Inter. Mater. Rev.53 (2008) 105. 10.1179/174328008X277795 Search in Google Scholar

[7] RegazzoniG., KocksU.F., FollansbeeP.S.: Acta Metall.35 (1987) 2865. 10.1016/0001-6160(87)90285-9 Search in Google Scholar

[8] ZerilliF.J., ArmstrongR.W.: Acta Metall. Mater.40 (1992) 1803. 10.1016/0956-7151(92)90166-C Search in Google Scholar

[9] MáthisK., ČapekJ., ZdražilováZ., TrojanováZ.: Mater. Sci. Eng. A528 (2011) 5904. Search in Google Scholar

[10] CouretA., CaillardD.: Acta Metall.33 (1985) 1447. 10.1016/0001-6160(85)90045-8 Search in Google Scholar

[11] CouretA., CaillardD.: Acta Metall.33 (1985) 1455. 10.1016/0001-6160(85)90046-X Search in Google Scholar

[12] MáthisK., NyilasK., AxtA., Dragomir-CernatescuI., UngárT., LukáčP.: Acta Mater.52 (2004) 2889. 10.1016/j.actamat.2004.02.034 Search in Google Scholar

[13] LiJ.M.C.: Canad. J. Phys.45 (1967) 493. 10.1139/p67-043 Search in Google Scholar

[14] TrojanováZ., LukáčP., KainerK.U.: Adv. Eng. Mater.9 (2007) 370. 10.1002/adem.200700018 Search in Google Scholar

[15] TrojanováZ., MáthisK., LukáčP., NémethG., ChmelíkF.: Mater. Chem. Phys.130 (2011) 1146. 10.1016/j.matchemphys.2011.08.045 Search in Google Scholar

[16] TrojanováZ., LukáčP.: Int. J. Mater. Res.100 (2009) 270. 10.3139/146.110048 Search in Google Scholar

[17] LukáčP.: Czech. J. Phys. B35 (1985) 275. 10.1007/BF01605096 Search in Google Scholar

[18] FelthamP.: Phys. Stat. Sol.3 (1963) 1340. 10.1002/pssb.19630030805 Search in Google Scholar

[19] HamerskýM., TrojanováZ., LukáčP.: Acta Technica ČSAV37 (1992) 263. Search in Google Scholar

[20] ArmstrongR.W.: J. Sci. Ind. Res.32 (1973) 591598. Search in Google Scholar

[21] FollansbeeP.S., RegazzoniG., KocksU.F.: Ins. Phys. Conf. Ser.70 (1984) 71. Search in Google Scholar

[22] TrojanováZ., LukáčP.: Procedia Engineering10 (2011) 2318. 10.1016/j.proeng.2011.04.382 Search in Google Scholar

[23] ArmstrongR.W., ArnoldW., ZerilliF.J.: Metall. Mater. Trans.38A (2007) 2605. 10.1007/s11661-007-9142-5 Search in Google Scholar

[24] SwegleJ.W., GradyE.D.: J. Appl. Phys.58 (1985) 692. 10.1063/1.336184 Search in Google Scholar

[25] ArmstrongR.W., ArnoldW., ZerilliF.J.: J. Appl. Phys.105 (2009) 023511. 10.1063/1.3067764 Search in Google Scholar

[26] ArmstrongR.W., CoffeyS.C., ElbanW.L.: Acta Metall.30 (1982) 2111. 10.1016/0001-6160(82)90131-6 Search in Google Scholar

[27] UlaciaI., SalisburyC.P., HurtadoI., WorswickM.J.: J. Mater. Process. Technol.211 (2011) 830. 10.1016/j.jmatprotec.2010.09.010 Search in Google Scholar

[28] StartsevV.I.: Dislocation and strength of metals at very low temperatures. Dislocations in Solids Vol. 6 (Ed. NabarroF.R.N.) North Holland Publishing Company, Amsterdam- NewYork-Oxford, 1983, pp. 145. Search in Google Scholar

[29] HershbergerJ., AjayiO.O., ZhangJ., YoonH., FenskeG.R.: Wear258 (2005) 1471. 10.1016/j.wear.2004.10.010 Search in Google Scholar

[30] ArmstrongR., CoddI., DouthwaiteR.M., PetchN.J.: Phil. Mag.7 (1962) 45. 10.1080/14786436208201857 Search in Google Scholar

[31] CáceresC.H., MannG.E., GriffithsJ.R.: Metal. Mater. Trans.42A (2011) 1950. Search in Google Scholar

Received: 2012-12-3
Accepted: 2013-1-4
Published Online: 2013-02-18
Published in Print: 2013-08-08

© 2013, Carl Hanser Verlag, München