Accessible Unlicensed Requires Authentication Published by De Gruyter March 26, 2013

The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels

Hamed Hoseiny, Berne Högman, Hans-Olof Andrén, Uta Klement, Jan-Eric Ståhl and Anders Thuvander

The machinability of two prehardened mould steels, one continuously-cooled and one quenched and tempered, is compared in terms of cutting temperature, cutting force and tool life. Both materials have a hardness of ∼40 HRC which is a typical hardness for prehardened mould steels. The results of machinability tests are related to mechanical properties and microstructural features, and the material removal rate is estimated for the materials. The continuously-cooled steel with bainitic structure shows higher machinability and possesses superior impact toughness and ductility compared to the quenched and tempered steel with martensitic structure. These properties are very important for plastic mould steels. The continuously-cooled bainitic steel also has the advantage of not requiring any costly quenching and tempering processes in connection with its production.


f Correspondence address, Hamed Hoseiny, Uddeholms AB, Research and Development, SE-683 85 Hagfors, Sweden, Tel.: +46707139733, Fax: +4656317451, E-mail:

References

[1] HippenstielF. (Ed): Handbook of Plastic Mould Steels, Edelstahlwerke Buderus AG, Wetzlar (2004). Search in Google Scholar

[2] RobertsG., KraussG., KennedyR.: Tool Steels, 5th Edn., ASM International, Materials Park, OH (2000). Search in Google Scholar

[3] MesquitaR.A., BarbosaC.A., in: 18th International Congress of Mechanical Engineering, Ourto Preto, MG, (2005). Search in Google Scholar

[4] Steels for Moulds, 6th Edn., Uddeholms AB, Hagfors (2007). Search in Google Scholar

[5] LeeF.: Enhancing plastic mould steel tooling performance with Nimax, Paper presented at the Materials Science and Technology (MS&T), Detroit, Michigan (2007. Search in Google Scholar

[6] LuoY., WuX., WangH., MinY.A.: Mater. Sci. Eng. A492 (2008) 205. 10.1016/j.msea.2008.04.055 Search in Google Scholar

[7] KraussG.: Steels-Processing, Structure and Performance, ASM International, Materials Park, Ohio (2005). Search in Google Scholar

[8] PickeringF.B., in: KraussG., NordbergH. (Eds.), Tool Materials for Molds and Dies, St. Charles, Illinois (1987) 3. Search in Google Scholar

[9] LuoY., WuX.-C., WangH.-B., MinY.-A.: J. Mater. Process. Technol.209 (2009) 5437. 10.1016/j.jmatprotec.2008.02.039 Search in Google Scholar

[10] HoseinyH., KlementU., SotskovszkiP., AnderssonJ.: Mater. Des.32 (2011) 21. 10.1016/j.matdes.2010.06.045 Search in Google Scholar

[11] LuoY., WuX., MinY.A., ZhuZ., WangH.: J. Iron. Steel. Res. Int.16 (2009) 61. 10.1016/S1006-706X(09)60029-7 Search in Google Scholar

[12] HaseK., HoshinoT., AmanoK.: Paper presented at the Heat treating – Including steel heat treating in the new millenium, Cincinnati, Ohio (1999). Search in Google Scholar

[13] HanssonP., in: RossoM., Actis GrandeM., UguesD. (Eds.), Tooling Materials and Their Applications from Research to Market, Torino, Italy (2006) 275. Search in Google Scholar

[14] HoseinyH., HögmanB., KlementU., KinnanderA.: Int. J. Mach. Mach. Mater.11 (2012) 327. Search in Google Scholar

[15] ChandrasekaranH.: Machinability of Ferrous Alloys and the Role of Microstructural Parameters – A litterature survey. Report IM-3664, Swedish Institute for Metals Research, Stockholm (1998). Search in Google Scholar

[16] Le CalvezC., RechJ., DessolyM., MoisanA.: Paper presented at the 2nd International Conference on Design and Production of Dies and Molds, Kusadsi, Turkey (2001). Search in Google Scholar

[17] GiumelliA.K., MilitzerM., HawboltE.B.: ISIJ Int.39 (1999) 271. 10.2355/isijinternational.39.271 Search in Google Scholar

[18] StephensonD.A.: Trans. ASME115 (1993) 432. 10.1115/1.2921655 Search in Google Scholar

[19] AlvelidB.: Ann. CIRP18 (1970) 547. Search in Google Scholar

[20] LanghammerK.: Carbide J. (1976) May-June:5. Search in Google Scholar

[21] KönigW., EsselK.: Arch. Eisenhüttenwes.47 (1976) 10. Search in Google Scholar

[22] ThuvanderA., BlomR.: Material data for heat treatment simulation of tool steels and high speed steels, Swedish Institute for Metals Research, Stockholm (1996). Search in Google Scholar

[23] MorrellR.: Table of physical and chemical constants. National Physical Laboratory. http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_7.html. Search in Google Scholar

[24] Umetrics: MODDE 8, User Guide and Tutorial. Umetrics Inc. (2006). Search in Google Scholar

[25] Bacci da SilvaM., WallbankJ.: J. Mater. Process. Technol.88 (1999) 195. 10.1016/S0924-0136(98)00395-1 Search in Google Scholar

[26] StephensonD.A.: Trans. ASME115 (1993) 432. 10.1115/1.2921655 Search in Google Scholar

[27] M’SaoubiR., NordhL.-G.: Comparative temperature study in turning using IR-CCD technique and tool-work thermocouple method, IM-2004-556, Swedish Institute for Metals Research, Stockholm (2004). Search in Google Scholar

[28] TrentE.M., WrightP.K.: Metal Cutting, 4th Edn., Butterworth-Heinemann, Boston (2000). Search in Google Scholar

[29] StåhlJ.-E.: Metal Cutting-Theory and Models (in Swedish), Lund Institute of Technology, Lund (2008). Search in Google Scholar

[30] ChildsT., MaekawaK., ObikawaT., YamaneY.: Metal Machining, Theory and Applications, Arnold, London (2000). Search in Google Scholar

[31] AbukhshimN.A., MativengaP.T., SheikhM.A.: Int. J. Mach. Tool. Manuf.46 (2006) 782. 10.1016/j.ijmachtools.2005.07.024 Search in Google Scholar

[32] SoboyejoW.: Mechanical Properties of Engineered Materials, Marcel Dekker Inc., New York (2003).15348534 Search in Google Scholar

[33] DieterG.E.: Mechanical Metallurgy, 3rd Edn., McGraw-Hill, Boston (1986). Search in Google Scholar

[34] BrandãoL.C., Teixeira CoelhoR., Roger RodriguesA.: J. Mater. Process. Technol.199 (2008) 234. 10.1016/j.jmatprotec.2007.07.049 Search in Google Scholar

[35] AppleC.A.: Mechanical Working and Steel ProcessingXXVII (1989) 415. Search in Google Scholar

[36] MoritoS., YoshidaH., MakiT., HuangX.: Mater. Sci. Eng. A438-440 (2006) 237. 10.1016/j.msea.2005.12.048 Search in Google Scholar

[37] TomitaY., OkabayashiK.: Metall. Trans. A17 (1986) 1203. 10.1007/BF02665319 Search in Google Scholar

[38] TuM.-Y., HsuC.-A., WangW.-H., HsuY.-F.: Mater. Chem. Phys.107 (2008) 418. 10.1016/j.matchemphys.2007.08.017 Search in Google Scholar

[39] BhadeshiaH.K.D.H.: Bainite in Steels: Transformations, Microstructure and Properties, 2nd Edn., The Institute of Materials, London (2001). Search in Google Scholar

[40] FuruharaT., TakayamaN., MiyamotG.: Mater. Sci. Forum.638-642 (2010) 3044. 10.4028/www.scientific.net/MSF.638-642.3044 Search in Google Scholar

[41] DaigneJ., GuttmannM., NaylorJ.P.: Mater. Sci. Eng.56 (1982) 1. 10.1016/0025-5416(82)90176-8 Search in Google Scholar

[42] ChandrasekaranH., M’SaoubiR., KarlssonO., PerssonU.: Milling of prehardened mould steels- Role of microstructure on machinability and tool wear mechanisms. Report IM-2005-520, Swedish Institute for Metal Research, Stockholm (2005). Search in Google Scholar

[43] StåhlJ.-E., AnderssonM., AnderssonC., in: Swedish Production Symposium, Gothenburg (2007). Search in Google Scholar

[44] WoxénR.: Theory and an Equation for the Life of Lathe Tools, Kungl. Ingenjörsvetenskapsakademin, Stockholm (1932). Search in Google Scholar

[45] ColdingB.: The Machining Productivity Mountain and its Wall of Optimum Productivity. In: Proc. of 9th NAMRC, Pennsylvania, (1981). Search in Google Scholar

[46] TaylorF.W.: Trans. ASME28 (1907) 319. Search in Google Scholar

Received: 2012-6-20
Accepted: 2012-6-20
Published Online: 2013-03-26
Published in Print: 2013-08-08

© 2013, Carl Hanser Verlag, München