Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 15, 2013

Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co–Cu alloy

  • X. Q. Yang , Z. Chen , W. Yang and J. T. Liu

Thermal stability after recalescence of the single-phase supersaturated granular grains prepared in Co-15 at.%Cu immiscible alloy melt was investigated. As for undercooled Co–Cu alloy, a transition from dendritic to granular crystals occurred when ΔT ≥ ΔT∗, which was induced by an abrupt change in the dendritic growth mechanism from solute-controlled to purely thermally-controlled growth. However, the recalescence effect led to grain growth and solute segregation of trapped Cu to grain boundaries. On this basis, a thermo-kinetic model applicable for nano-scale materials was extended to the system of micro-scale undercooled Co–Cu alloy. The model showed close agreement with the experimental results. It is concluded that Cu atoms captured by solute trapping re-segregated to grain boundaries, which was responsible for the reduction in grain boundary energy and improvement in thermal stability in undercooled Co–Cu alloy.


d Correspondence address, X.Q. Yang, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, P.R. China, Tel.: +086-0516-83591066, Fax: +086-0516-83591059, E-mail:

References

[1] HerlachD.M.: Mater. Sci. Eng.R12 (1994) 177272.10.1016/0927-796X(94)90011-6Search in Google Scholar

[2] ChenZ., LiuF., WangH.F., YangW., YangG.C., ZhouY.H.: J. Cryst. Growth310 (2008) 53855391. 10.1016/j.jcrysgro.2007.09.047Search in Google Scholar

[3] OkamotoH.: Phase Diagrams of Binary Iron Alloys. Materials Park, OH: ASM International. C1993: 4147; 131137.Search in Google Scholar

[4] KolbeM., CaoC.D., LuX.Y., GalenkoP.K., WeiB., HerlachD.M.: Mater. Sci. Eng. A375-377 (2004) 520523. 10.1016/j.msea.2003.10.121Search in Google Scholar

[5] KolbeM., CaoC.D., GalenkoP.K., FransaerJ., HerlachD.M., in: TaylorP.R., ChandraD., BautistaR.G. (Eds.), EPD Congress 2002 – Fundamentals of Advanced Materials for Energy Conversion, TMS, Warrendale, USA. (2002), p. 539.Search in Google Scholar

[6] GalenkoP.K., DanilovD.A.: Phys. Lett. A235 (1997) 271280. 10.1016/S0375-9601(97)00562-8Search in Google Scholar

[7] EcklerK., CochraneR.F., HerlachD.M., FeuerbacherB., JurischM.: Phys. Rev. B45 (9) (1992) 50195023. 10.1103/PhysRevB.45.5019Search in Google Scholar

[8] WangG.X., PrasadV., MatthysE.F.: J. Cryst. Growth174 (1997) 3540. 10.1016/S0022-0248(96)01055-XSearch in Google Scholar

[9] LiuF., KirchheimR.: J. Cryst. Growth264 (2004) 385391. 10.1016/j.jcrysgro.2003.12.021Search in Google Scholar

[10] SchwarzM., KarmaA., EcklerK., HerlachD.M.: Phys. Rev. Lett.73 (1994) 13801383.1005677810.1103/PhysRevLett.73.1380Search in Google Scholar

[11] BoettingerW.J., CoriellS.R., TrivediR., in: MehrabianR., ParrishP.A., (Eds), Rapid Solidification Processing: Principles and Technologies IV, Claitor’s, Baton Rouge, LA, (1988), p.13.Search in Google Scholar

[12] WangH.F., LiuF., ChenZ., YangG.C., ZhouY.H.: Acta Mater.55 (2007) 497506. 10.1016/j.actamat.2006.07.031Search in Google Scholar

[13] WeissmüllerJ.: Nanostructured Mater.3 (1993) 261272. 10.1016/0965-9773(93)90088-SSearch in Google Scholar

[14] KirchheimR.: Acta Mater.50 (2002) 413419. 10.1016/S1359-6454(01)00338-XSearch in Google Scholar

[15] LiuF., KirchheimR.: J. Cryst. Growth.264 (2004) 385391. 10.1016/j.jcrysgro.2003.12.021Search in Google Scholar

[16] GibbsJ.W.: Trans. Conn. Acad. III108 (1876);GibbsJ.W., Trans. Conn. Acad. III343 (1878);GibbsJ.W.: The Collected Works of J.W. Gibbs vol. 1, Longmans, Green and Co, New York (1928) pp. 55354.Search in Google Scholar

[17] GongM.M., LiuF., ZhangK.: Scripta Mater.63 (2010) 989992. 10.1016/j.scriptamat.2010.07.030Search in Google Scholar

[18] BurkeJ.E.: Trans. Metall. Soc. AIME.175 (1949) 7391.Search in Google Scholar

[19] BrandesE.C.: Smithells Metals Reference Book, 6th ed., London; Butterworth, (1983), 14.714.11.Search in Google Scholar

[20] SeahM.P.: J. Phys.10 (1980) 1043. 10.1088/0305-4608/10/6/006Search in Google Scholar

[21] RothT.A.: Mater. Sci. Eng.18 (1975) 183192. 10.1016/0025-5416(75)90168-8Search in Google Scholar

[22] ChoiP., da SilvaM., KlementU., Al-KassabT., KirchheimR.: Acta Mater.53 (2005) 44734481. 10.1016/j.actamat.2005.06.006Search in Google Scholar

[23] DetorA.J., MillerM.K., SchuhC.A.: Phil. Mag.86 (28) (2006) 44594475. 10.1080/14786430600726749Search in Google Scholar

[24] DetorA.J., SchuhC.A.: Acta Mater.55 (2007) 371379. 10.1016/j.actamat.2006.08.032Search in Google Scholar

[25] DetorA.J., SchuhC.A.: J. Mater. Res.22 (11) (2007) 32333248. 10.1557/JMR.2007.0403Search in Google Scholar

Received: 2012-9-9
Accepted: 2013-2-22
Published Online: 2013-04-15
Published in Print: 2013-08-08

© 2013, Carl Hanser Verlag, München

Downloaded on 30.3.2023 from https://www.degruyter.com/document/doi/10.3139/146.110928/html
Scroll Up Arrow