Accessible Requires Authentication Published by De Gruyter November 30, 2013

Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method

Mohsen Ayaz, Daavood Mirahmadi Khaki, Nasrollah Bani Mostafa Arab and Ali Noroozi


In this paper, the influence of major hot rolling process parameters on strain hardening exponent and grain size as criteria for the formability of Nb-microalloyed steel sheet was investigated and an optimum level of parameters by using Taguchi grey relational analysis has been obtained. For this purpose, parameters of roughing, finishing and coiling temperatures were chosen and four levels for these temperatures were considered. Sixteen experiments for each response were conducted based on an orthogonal array of the Taguchi method. Analysis of variance, signal to noise ratios and grey relational grade were calculated in order to optimize strain hardening exponent and grain size of Nb-microalloyed steel sheets, simultaneously. It was observed that the roughing temperature of 1 050 °C; finishing temperature of 850 °C; and coiling temperature of 700 °C are the optimum parameter values producing better formability in terms of strain hardening exponent and grain size. The validity of Taguchi grey relational analysis to process optimization was also well established by means of confirmation tests.

* Correspondence address, Mohsen Ayaz, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran, Tel.: +989377463128, Fax: +982184812124, E-mail:


[1] Ya-binCao, Fu-renXiao, Gui-yingQiao, Xiao-bingZhang, BoLiao: Mater. Sci. Eng. A530 (2011) 277. 10.1016/j.msea.2011.09.086 Search in Google Scholar

[2] F.Wang, Q.Zhu, J.Lin, T.A.Dean: J. Mater. Process. Tech.177 (2006) 530. 10.1016/j.jmatprotec.2006.03.197 Search in Google Scholar

[3] J.G.Cheng, J.Zhang, C.C.Chu, J.Zhe: Int. J. Adv. Manuf. Technol.26 (2005) 1222. 10.1007/s00170-004-2096-5 Search in Google Scholar

[4] T.Siwecki, A.Sandberg, W.Roberts, R.Lagneborg in: A.J.Ratz, G.A.Ratz, P.J.Wray (Eds.), Conf. Proc. TMS-AIME, Warrendale, USA (1982) 163. Search in Google Scholar

[5] J.L.Lanzagorta, D.Jorge-Badiola, I.Gutiérrez: Mater. Sci. Eng. A527 (2010) 934. 10.1016/j.msea.2009.09.007 Search in Google Scholar

[6] B.Verlinden, J.Driver, I.Samajdar, R.D.Doherty in: R.W.Cahn (Ed.), Thermo-mechanical Processing of Metallic Materials, Pergamon Materials Series, Pergamon, UK (2007) 33. Search in Google Scholar

[7] A.J.DeArdo: Modern Thermomechanical Processing of Microalloyed Steel: A Physical Metallurgy Prespective, Proc. Int. Conference Microalloying ’95, Iron and Steel Society, Inc., Pittsburg, PA, USA (1995) 15. Search in Google Scholar

[8] M.C.Zhao, K.Yang, Y.Shan: Mat. Sci. Eng. A335 (2002) 14. 10.1016/S0921-5093(01)01904-9 Search in Google Scholar

[9] H.Tamura, H.Sekine, T.Tanaka, C.Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels; Butterworth & Co. Ltd., London (1988). Search in Google Scholar

[10] D.T.LleweUyn, R.C.Hudd: Steels; Metallurgy and Applications, Reed Educational and Professional Publishing Ltd., Oxford (1998). Search in Google Scholar

[11] G.S.Peace: Taguchi method: A hands-on approach, Addision-Wesley, New York (1992). Search in Google Scholar

[12] D.S.Badkar, K.S.Pandey: Int. J. Adv. Manuf. Technol.52 (2011) 1067. 10.1007/s00170-010-2787-z Search in Google Scholar

[13] M.Kurt, E.Bagci, Y.Kaynak: Int. J. Adv. Manuf. Technol.40 (2009) 458. 10.1007/s00170-007-1368-2 Search in Google Scholar

[14] D.M.Khaki, V.A.Otaaghvar: Iron Steel Res. Int.18 (2011) 585. Search in Google Scholar

[15] P.L.Ross: Taguchi Techniques for Quality Engineering. McGraw-Hill Book Company, New York (1988). Search in Google Scholar

[16] R.K.Roy: A Primer on Taguchi Method, Van Nostrand Reinhold, New York (1990). Search in Google Scholar

[17] S.Basavarajappa, G.Chandramohan, J.P.Davim: Mater. Des.28 (2007) 1393. 10.1016/j.matdes.2006.01.006 Search in Google Scholar

[18] M.S.Phadke: Quality engineering using robust design, Prentice-Hill, Englewood Cliffs, New Jersey (1989). Search in Google Scholar

[19] N.M.Mehata, S.Kamaruddin: Mater. Proc. Tech.211 (2011) 1989. 10.1016/j.jmatprotec.2011.06.014 Search in Google Scholar

[20] E.Ahmad, T.Manzoor, N.Hussain, N.K.Qazi: Mater. Des.29 (2008) 450. 10.1016/j.matdes.2006.12.022 Search in Google Scholar

[21] M.Gomez, P.Valles, S.F.Medina: Mat. Sci. Eng. A528 (2011) 4761. 10.1016/j.msea.2011.02.087 Search in Google Scholar

[22] A.Bakkaloglu: Mater. Lett.56 (2002) 263. 10.1016/S0167-577X(02)00440-8 Search in Google Scholar

[23] B.Eghbali, A.Abdollah-zadeh: Scripta Mater.53 (2005) 41. 10.1016/j.scriptamat.2005.03.014 Search in Google Scholar

[24] X.S.Yi, W.X.Shi, S.L.Yu, X.H.Li, N.Sun, C.He: Desalination274 (2011) 7. 10.1016/j.desal.2010.10.019 Search in Google Scholar

[25] J.L.Deng: J. Grey Syst.1 (1989) 1. Search in Google Scholar

[26] C.B.Chen, C.T.Lin, C.W.Chang, C.P.Ho: J. Tech.15 (2000) 25. Search in Google Scholar

[27] W.J.McTegart, A.Gattins: Hot deformation of austenite, AIME, NY (1976). Search in Google Scholar

[28] J.L.Lanzagorta, D.Jorge-Badiola, I.Gutiérrez: Mat. Sci. Eng. A527 (2010) 934. 10.1016/j.msea.2009.09.007 Search in Google Scholar

[29] B.K.Panigrahi: B. Mater. Sci.24 (2001) 361. 10.1007/BF02708632 Search in Google Scholar

[30] Q.-Y.Sha, G.-Y.Li, L.-F.Qiao, P.-Y.Yan: Proc. Sino-Swedish Structural Materials Symposium, Swedish (2007) 316. Search in Google Scholar

Received: 2012-9-11
Accepted: 2013-6-24
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München