Accessible Requires Authentication Published by De Gruyter November 30, 2013

Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties

L. Z. Pei, Y. Q. Pei, Y. K. Xie, C. G. Fan and Q. F. Zhang

Abstract

Manganese vanadate microtubes have been synthesized via a simple hydrothermal process using polyvinyl pyrrolidone as the surfactant. Scanning electron microscopy observation shows that polyvinyl pyrrolidone plays an essential role in the formation and phase transformation of the manganese vanadate microtubes. A polyvinyl pyrrolidone-assisted “Ostwald ripening” growth mechanism has been proposed to explain the formation process of the manganese vanadate microtubes. The electrochemical behavior of L-cysteine at the manganese vanadate microtube modified glassy carbon electrode has been analyzed. The manganese vanadate microtube modified glassy carbon electrode exhibits the performance for the electrochemical determination of L-cysteine with a detection limit of 9.2 μM and linear range of 0.01 – 2 mM.


* Correspondence address, L. Z. Pei, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, P. R. China, Tel.: +86555 2311570, Fax: +86555 2311570, E-mail:

References

[1] E.Andrukaitis: J. Power Sources68 (1997) 652. 10.1016/S0378-7753(96)02572-4 Search in Google Scholar

[2] T.Nakajima, M.Isobe, T.Tsuchiya, Y.Ueda, T.Manabe: Opt. Mater.32 (2010) 1618. 10.1016/j.optmat.2010.05.021 Search in Google Scholar

[3] Y.Sakurai, H.Ohtsuka, J.I.Yamaki: J. Electrochem. Soc.135 (1988) 32. 10.1149/1.2095582 Search in Google Scholar

[4] Y.Takeda, K.Itoh, R.Kanno, T.Icikawa, N.Imanishi, O.Yamamoto: J. Electrochem. Soc.138 (1991) 2566. 10.1149/1.2085588 Search in Google Scholar

[5] E.Andrukaitis, G.L.Torlone, I.R.Hill: J. Power Sources81–82 (1999) 651. 10.1016/S0378-7753(99)00094-4 Search in Google Scholar

[6] L.Tan, H.W.Liu: Inorg. Mater.46 (2010) 201. 10.1134/S0020168510020202 Search in Google Scholar

[7] F.Leroux, Y.Piffard, G.Ourvard, J.L.Mansot, D.Guyomard: Chem. Mater.11 (1999) 2948. 10.1021/cm991074g Search in Google Scholar

[8] J.H.Liao, T.Drezen, F.Leroux, D.Guyomard, Y.Piffard: Eur. J. Solid State Inorg. Chem.33 (1996) 411. Search in Google Scholar

[9] Y.Piffard, F.Leroux, D.Guyomard, J.L.Mansot, M.Tournoux: J. Power Sources68 (1997) 698. 10.1016/S0378-7753(96)02576-1 Search in Google Scholar

[10] S.S.Kim, H.Ikuta, M.Wakihara: Solid State Ionics139 (2001) 57. 10.1016/S0167-2738(00)00816-X Search in Google Scholar

[11] M.Inagaki, T.Morishita, M.Hirano, V.Gupta, T.Nakajima: Solid State Ionics156 (2003) 275. 10.1016/S0167-2738(02)00679-3 Search in Google Scholar

[12] T.Morishita, H.Konno, Y.Izumi, M.Inagaki: Solid State Ionics177 (2006) 1347. 10.1016/j.ssi.2006.05.035 Search in Google Scholar

[13] T.Morishita, K.Nomura, T.Inamasu, M.Inagaki: Solid State Ionics176 (2005) 2235. 10.1016/j.ssi.2005.06.013 Search in Google Scholar

[14] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 467. 10.1007/s11458-008-0061-9 Search in Google Scholar

[15] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 275. 10.1007/s11458-008-0060-x Search in Google Scholar

[16] L.Z.Pei, Y.Q.Pei, Y.K.Xie, C.Z.Yuan, D.K.Li, Q.F.Zhang: Mater. Res. in press (2012). 10.1557/jmr.2012.254 Search in Google Scholar

[17] E.Baudrin, S.Laruelle, S.Denis, M.Touboul, J.M.Tarascon: Solid State Ionics123 (1999) 139. 10.1016/S0167-2738(99)00096-X Search in Google Scholar

[18] D.Hara, H.Ikuta, Y.Uchimoto, M.Wakihara: J. Mater. Chem.12 (2002) 2507. 10.1039/b201966c Search in Google Scholar

[19] N.Spataru, B.V.Sarada, E.Papa, D.A.Tryk, A.Fujishima: Anal. Chem.73 (2001) 514. PMid: 11217755; 10.1021/ac000220v Search in Google Scholar

[20] S.A.Wring, J.P.Hart, B.J.Birch: Analyst114 (1989) 1563. 10.1039/an9891401563 Search in Google Scholar

[21] J.Kulys, A.Drungiliene: Anal. Chim. Acta243 (1991) 287. 10.1016/S0003-2670(00)82572-6 Search in Google Scholar

[22] P.C.White, N.S.Lawrence, J.Davis, R.G.Compton: Anal. Chim. Acta447 (2001) 1. 10.1016/S0003-2670(01)01297-1 Search in Google Scholar

[23] L.Z.Pei, L.J.Yang, Y.Yang, C.Z.Yuan, C.G.Fan, Q.F.Zhang: Mater. Chem. Phys.130 (2011) 104. 10.1016/j.matchemphys.2011.06.002 Search in Google Scholar

[24] L.Z.Pei, Y.Yang, L.J.Yang, C.G.Fan, C.Z.Yuan, Q.F.Zhang: Solid State Commun.151 (2011) 1036. 10.1016/j.ssc.2011.04.017 Search in Google Scholar

[25] N.Wang, J.Ding, G.C.Li, H.R.Peng: Cryst. Res. Technol.45 (2010) 316. 10.1002/crat.200900501 Search in Google Scholar

[26] L.Z.Pei, Y.Yang, C.G.Fan, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Cryst. Eng. Comm.13 (2011) 4658. 10.1039/c1ce05070b Search in Google Scholar

[27] L.Z.Pei, Y.Yang, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Mater. Charact.62 (2011) 555. 10.1016/j.matchar.2011.01.001 Search in Google Scholar

[28] D.S.Zheng, S.S.Sun, W.L.Fan, H.Y.Yu, C.H.Fan, G.X.Cao, Z.L.Yin, X.Y.Song: J. Phys. Chem. B109 (2005) 16439. 10.1021/jp0456234 Search in Google Scholar

[29] Y.D.Yin, Y.Lu, Y.G.Sun, Y.N.Xia: Nano Lett.2 (2002) 427. 10.1021/nl025508 Search in Google Scholar

[30] J.W.Wang, X.Wang, Q.Peng, Y.D.Li: Inorg. Chem.43 (2004) 7552. PMid: 15530107; 10.1021/ic030085f Search in Google Scholar

[31] S.H.Tolbert, C.C.Landry, G.D.Stucky, B.F.Chmelka, P.Norby, J.C.Hanson, A.Monnier: Chem. Mater.13 (2001) 2247. 10.1021/cm0003727 Search in Google Scholar

[32] D.H.Chen, Z.Li, Y.Wan, X.J.Tu, Y.F.Shi, Z.X.Chen, W.Shen, C.Z.Yu, B.Tu, D.Y.Zhao: J. Mater. Chem.16 (2006) 1511. 10.1039/b517975k Search in Google Scholar

[33] V.Singh, P.K.Sharma, P.Chauhan: Mater. Chem. Phys.121 (2010) 202. 10.1016/j.matchemphys.2010.01.019 Search in Google Scholar

[34] Y.Zou, D.S.Li, D.R.Yang: Nanoscale Res. Lett.6 (2011) 374. 10.1186/1556-276X-6-374 Search in Google Scholar

[35] B.Mayers, Y.Xia: Adv. Mater.14 (2002) 279. 10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2 Search in Google Scholar

[36] Y.R.Ma, L.M.Qi, J.M.Ma, H.M.Cheng: Adv. Mater.16 (2004) 1023. 10.1002/adma.200305830 Search in Google Scholar

[37] X.Peng: Adv. Mater.15 (2003) 459. 10.1002/adma.200390107 Search in Google Scholar

[38] S.M.Lee, S.N.Cho, J.Cheon: Adv. Mater.15 (2003) 441. 10.1002/adma.200304588 Search in Google Scholar

[39] L.Guo, C.Liu, R.Wang, H.Xu, Z.Wu, S.Yang: J. Am. Chem. Soc.126 (2004) 4530. 10.1021/ja037604y Search in Google Scholar

[40] L.J.Li, R.J.Nicholas, C.Y.Chen, R.C.Darton, S.C.Baker: Nanotechnology16 (2005) S202. 10.1088/0957-4484/16/1/007 Search in Google Scholar

[41] V.M.Burlakov: Phys. Rev. Lett.97 (2006) 155703. PMid: 17155338; 10.1103/PhysRevLett.97.155703 Search in Google Scholar

[42] W.C.Zhu, S.L.Zhu, L.Xiang: Cryst. Eng. Comm.11 (2009) 1910. 10.1039/b804956d Search in Google Scholar

[43] I.Sapurina, J.Stejskal: Chem. Pap.63 (2009) 579. 10.2478/s11696-009-0061-3 Search in Google Scholar

[44] Y.Z.Fu, R.Yuan, D.P.Tang, Y.Q.Chai, L.Xu: Colloids Surf. B40 (2005) 61. PMid: 15620841; 10.1016/j.colsurfb.2004.10.022 Search in Google Scholar

[45] Y.P.Dong, L.Z.Pei, X.F.Chu, W.B.Zhang, Q.F.Zhang: Electrochim. Acta55 (2010) 5135. 10.1016/j.electacta.2009.11.042 Search in Google Scholar

[46] P.Dharmapandian, S.Rajesh, S.Rajasingh, A.Rajendran, C.Karunakaran: Sensor Actuat. B148 (2010) 17. 10.1016/j.snb.2010.04.023 Search in Google Scholar

[47] Z.Chen, H.Zheng, C.Lu, Y.Zu: Langmuir23 (2007) 10816. 10.1021/la062210g Search in Google Scholar

[48] S.M.Chen, J.Y.Chen, R.Thangamuthu: Electroanalysis20 (2008) 1565. 10.1002/elan.200704036 Search in Google Scholar

[49] A.Salimi, R.Hallaj: Talanta66 (2005) 967. PMid: 18970079; 10.1016/j.talanta.2004.12.040 Search in Google Scholar

Received: 2012-11-11
Accepted: 2013-7-9
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München