Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2013

Critical sizes for coherent to semicoherent transition in precipitates

Arun Kumar, Gaganpreet Kaur and Anandh Subramaniam

Abstract

A coherent precipitate, on growth beyond a critical size, can become semicoherent through the formation of interfacial misfit dislocations. This investigation pertains to the finite element simulation of the state of stress of a coherent precipitate, its growth and the change in state of stress on the formation of an interfacial misfit dislocation loop. Critical radii are determined from the simulations based on: (i) global energy minimum (r*) and (ii) local force balance along the radial direction (rc). The concept of local force balance as existing in literature is extended to the circumferential direction, to calculate a new critical size (rt). Local force balance gives radii at which the interface is the stable position for the dislocation loop. Off-interface stability of the dislocation loops is also investigated. The Cu–γFe system is used as an example to illustrate the new methodology developed and validate the results of the simulation. The power of the methodology is shown by considering a configuration (precipitation in a thin disc), where standard theoretical formulations are inadequate.


* Correspondence address, Dr. Anandh Subramaniam, FB408, Department of Materials Science and Engineering (MSE), Indian Institute of Technology, Kanpur-208016, India, Tel.: (+91) (512) 259 7215, Fax: (+91) (512) 259 7505, E-mail:

References

[1] D.A.Porter, K.E.Easterling: Phase Transformations in Metals and Alloys, Chapman & Hall, London (1992).Search in Google Scholar

[2] L.M.Brown, G.R.Woolhouse, U.Valdrè: Philos. Mag.17 (1968) 781. 10.1080/14786436808223029Search in Google Scholar

[3] J.W.Matthews in: F.R.N.Nabarro (Eds.), Dislocations in Solids, North-Holland Publishing Company, New York (1979).Search in Google Scholar

[4] L.M.Brown, G.R.Woolhouse: Philos. Mag.21 (1970) 329. 10.1080/14786437008238420Search in Google Scholar

[5] U.Stigh: Mech. Mater.14 (1993) 179. 10.1016/0167-6636(93)90065-YSearch in Google Scholar

[6] K.Sasaki, M.Kishida, Y.Ekida: Intl. J. Num. Meth. Eng.54 (2002) 671. 10.1002/nme.437Search in Google Scholar

[7] K.W.Schwarz: J. Appl. Phys.85 (1999) 108. 10.1063/1.369429Search in Google Scholar

[8] D.Raabe: Z. Metallkd.87 (1996) 493.Search in Google Scholar

[9] S.Sen, R.Balasubramaniam, R.Sethuraman: Scripta Metall. Mater.33 (1995) 527. 10.1016/0956-716X(95)00204-9Search in Google Scholar

[10] N.Miyano, K.Ameyama, N.Hirano, Y.Takao: Mater. Sci. Eng. A480 (2008) 464. 10.1016/j.msea.2007.08.014Search in Google Scholar

[11] C.R.Chen, S.X.Li, Q.Zhang: Mater. Sci. Eng. A272 (1999) 398. 10.1016/S0921-5093(99)00507-9Search in Google Scholar

[12] H.Feng, H.Biermann, H.Mughrabi: Mater. Sci. Eng. A214 (1996) 1. 10.1016/0921-5093(96)10255-0Search in Google Scholar

[13] K.Nörthemann, A.Pundt: Phys. Rev. B78 (2008) 014105. 10.1103/PhysRevB.78.014105Search in Google Scholar

[14] S.H.Song, J.B.Kim: KSME J.9 (1995) 351.Search in Google Scholar

[15] Y.Nakasone, H.Nishiyama, T.Nojiri: Mater. Sci. Eng. A285 (2000) 229. 10.1016/S0921-5093(00)00637-7Search in Google Scholar

[16] N.Sukumar, D.L.Chopp, N.Moës, T.Belytschko: Comput. Meth. Appl. Mech. Eng.190 (2001) 6183. 10.1016/S0045-7825(01)00215-8Search in Google Scholar

[17] C.Du, Z.Ying, S.Jiang: IOP Conf. Series: Materials Science and Engineering10 (2010) 012083. 10.1088/1757-899X/10/1/012083Search in Google Scholar

[18] Anandh Subramaniam: J. Appl. Phys.95 (2004) 8472. 10.1063/1.1745115Search in Google Scholar

[19] A.Kumar, AnandhSubramaniam: Int. J. Nanosci.10 (2011) 93. 10.1142/S0219581X11007533Search in Google Scholar

[20] K.Tillmann, A.Förster: Thin Solid Films368 (2000) 93. 10.1016/S0040-6090(00)00858-0Search in Google Scholar

[21] R.Sankaran, C.Laird: J. Mech. Phys. Solids24 (1976) 241. 10.1016/0022-5096(76)90006-5Search in Google Scholar

[22] J.K.Lee, W.C.Johnson: Acta Metall.26 (1978) 541. 10.1016/0001-6160(78)90106-2Search in Google Scholar

[23] M.E.Thompson, C.S.Su, P.W.Voorhees: Acta Metall. Mater.42 (1994) 2107. 10.1016/0956-7151(94)90036-1Search in Google Scholar

[24] F.J.Humphreys: Acta Metall.16 (1968) 1069. 10.1016/0001-6160(68)90095-3Search in Google Scholar

[25] R.S.Herrick, J.R.Weertman, R.Petkovic-Luton, M.J.Luton: Scripta Metall.22 (1988) 1879. 10.1016/S0036-9748(88)80230-8Search in Google Scholar

[26] J.Douin, P.Donnadieu, F.Houdellier: Acta Mater.58 (2010) 5782. 10.1016/j.actamat.2010.06.053Search in Google Scholar

[27] G.C.Weatherly: Philos. Mag.17 (1968) 791. 10.1080/14786436808217753Search in Google Scholar

[28] F.D.Fischer, H.J.Böhm, E.R.Oberaigner, T.Waitz: Acta Mater.54 (2006) 151. 10.1016/j.actamat.2005.08.039Search in Google Scholar

[29] S.S.Quek, Y.Xiang, D.J.Srolovitz: Acta Mater.59 (2011) 5398. 10.1016/j.actamat.2011.05.012Search in Google Scholar

[30] F.R.N.Nabarro: Theory of crystal dislocations, Clarendon Press, Oxford (1967) 75.Search in Google Scholar

[31] G.S.Was: Fundamentals of Radiation Materials Science, Springer, New York (2007).Search in Google Scholar

[32] J.P.Hirth, J.Lothe: Theory of Dislocations, McGraw-Hill, New York (1968).Search in Google Scholar

[33] W.Bollmann: Crystal Defects and Crystalline Interfaces, Springer-Verlag, Berlin (1970). 10.1007/978-3-642-49173-3Search in Google Scholar

[34] A.Reuss: J. Appl. Math. Mech.9 (1929) 49.Search in Google Scholar

[35] G.R.Woolhouse, M.Ipohorski: Proc. R. Soc. A324 (1971) 415. 10.1098/rspa.1971.0147Search in Google Scholar

[36] W.A.Jesser: Philos. Mag.19 (1969) 993. 10.1080/14786436908225864Search in Google Scholar

[37] H.Brooks: Metal Interfaces, American Society of Metals, Cleveland (1952) 20.Search in Google Scholar

[38] T.Mura: Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, The Hague (1982). 10.1007/978-94-011-9306-1Search in Google Scholar

[39] E.A.Brandes (Ed.): Smithells Metals Reference Book, Butterworths, London (1983).Search in Google Scholar

[40] K.E.Easterling, H.M.Miekk-Oja: Acta Metall.15 (1967) 1133. 10.1016/0001-6160(67)90388-4Search in Google Scholar

[41] D.Watanabe, C.Watanabe, R.Monzen: J. Mater. Sci.43 (2008) 3946. 10.1007/s10853-007-2159-8Search in Google Scholar

[42] R.Abeyaratne, J.K.Knowles: Evolution of Phase Transitions, Cambridge University Press, Cambridge (2006). 10.1017/CBO9780511547133Search in Google Scholar

[43] M.E.Gurtin: Configurational Forces as Basic Concepts of Continuum Physics, Springer-Verlag, New York (2000).Search in Google Scholar

[44] G.Dehm, T.Wagner, T.J.Balk, E.Arzt: J. Mater. Sci. Technol.18 (2002a) 113.Search in Google Scholar

[45] L.B.Freund, S.Suresh: Thin Film Materials, Cambridge University Press, Cambridge (2003).Search in Google Scholar

[46] S.C.Abrahams, L.Guttman, J.S.Kasper: Phys. Rev.127 (1962) 2052. 10.1103/PhysRev.127.2052Search in Google Scholar

Received: 2012-12-12
Accepted: 2013-7-10
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München