Accessible Requires Authentication Published by De Gruyter November 30, 2013

Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics

Chunlin Fu, Jingnan Liang, Wei Cai, Gang Chen and Xiaoling Deng

Abstract

Pure and Mn-doped barium hafnate titanate ceramics (BaHf0.1MnxTi0.9xO3, where x = 0, 0.02, 0.05, 0.08, and 0.1) are prepared by means of a sol–gel method. The microstructures, dielectric properties and ferroelectric properties of the ceramics are investigated. X-ray diffraction patterns indicate that Mn4+ ions enter the unit cell to maintain the perovskite structure of solid solution. Consequently, the tetragonality gradually decreases with increased Mn content. The grains of Mn-doped BaHf0.1Ti0.9O3 ceramics become uniform and almost spherical. The diffuseness constant decreases from 1.89 to 1.48 with increased Mn content from 0 at.% to 5 at.%. Hysteresis loops can be observed in all samples from 30 °C to 90 °C, which may be due to the relaxor ferroelectric property of these ceramics.


* Correspondence address, Prof. Chunlin Fu, Huxi University Town, School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China, Tel.: +86 23 6502 3479, Fax: +86 23 6502 3706, E-mail:

References

[1] J.Hoffman, X.Hong, C.H.Ahn: Nanotechnology22 (2011) 254014. PMid: 21572192; 10.1088/0957-4484/22/25/254014 Search in Google Scholar

[2] S.Sheng, C.K.Ong: J. Appl. Phys.111 (2012) 044506. 10.1063/1.3686615 Search in Google Scholar

[3] S.Yin, G.Niu, B.Vilquin, B.Gautier, G. LeRhun, E.Defay, Y.Robach: Thin Solid Films520 (2012) 4572. 10.1016/j.tsf.2011.11.054 Search in Google Scholar

[4] O.Guillon, J.Chang, S.Schaab, S.J.L.Kang: J. Am. Ceram. Soc.95 (2012) 2277. 10.1111/j.1551-2916.2012.05196.x Search in Google Scholar

[5] X.Yang, X.Su, M.Shen, Y.Xin, L.Zhang, M.Hua, Y.Chen, V.G.Harris: Adv. Mater.24 (2012) 1202. 10.1002/adma.201104078 Search in Google Scholar

[6] R.Sagar, S.Madolappa, R.L.Raibagkar: Solid State Sci.14 (2012) 211. 10.1016/j.solidstatesciences.2011.11.006 Search in Google Scholar

[7] B.Garbarz-Glos, K.Bormanis, D.Sitko: Ferroelectrics417 (2011) 118. 10.1080/00150193.2011.578508 Search in Google Scholar

[8] C.Laulhé, F.Hippert, J.Kreisel, A.Pasturel, A.Simon, J.L.Hazemann, R.Bellissent: Phase Transit.84 (2011) 438. 10.1080/01411594.2010.547153 Search in Google Scholar

[9] W.Cai, C.Fu, Z.Lin, X.Deng: Ceram. Int.37 (2011) 3643. 10.1016/j.ceramint.2011.06.024 Search in Google Scholar

[10] M.M.Vijatović Petrović, J.D.Bobić, T.Ramoška, J.Banys, B.D.Stojanović: Mater. Charact.62 (2011) 1000. 10.1016/j.matchar.2011.07.013 Search in Google Scholar

[11] X.Diez-Betriu, J.E.Garcia, C.Ostos, A.U.Boya, D.A.Ochoa, L.Mestres, R.Perez: Mater. Chem. Phys.125 (2011) 493. 10.1016/j.matchemphys.2010.10.027 Search in Google Scholar

[12] X.G.Tang, K.H.Chew, H.L.W.Chan: Acta Mater.52 (2004) 5177. 10.1016/j.actamat.2003.11.030 Search in Google Scholar

[13] W.Cai, C.Fu, J.Gao, X.Deng: J. Mater. Sci.-Mater. El.21 (2010) 317. 10.1007/s10854-009-9913-4 Search in Google Scholar

[14] Y.Y.Yao, C.H.Song, P.Bao, D.Su, X.M.Lu, J.S.Zhu, Y.N.Wang: J. Appl. Phys.95 (2004) 3126. 10.1063/1.1649456 Search in Google Scholar

[15] A.Dixit, S.B.Majumder, R.S.Katiyar, A.S.Bhalla: J. Mater. Sci.41 (2006) 87. 10.1007/s10853-005-5929-1 Search in Google Scholar

Received: 2012-12-12
Accepted: 2013-7-10
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München