Accessible Requires Authentication Published by De Gruyter January 11, 2014

Atomic mobilities in fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena

Weibin Zhang, Lijun Zhang, Yong Du, Shuhong Liu and Chengying Tang

Abstract

An effective approach to establish the atomic mobility parameters of quaternary Cu-rich fcc Cu–Mn–Ni–Zn alloys is presented through assessments of the critically-reviewed experimental diffusivities available in the literature by means of DICTRA (DIffusion Controlled TRAnsformation) software. In the quaternary Cu-rich fcc Cu–Mn–Ni–Zn alloys, atomic mobilities in ternary fcc Cu–Mn–Ni and Cu–Ni–Zn boundary systems were directly taken from our previous work, while atomic mobilities in ternary fcc Cu–Mn–Zn boudnary system were assessed as a function of temperature and composition in this work. Since no experimental data were available, the atomic mobility database for fcc Ni–Mn–Zn alloys was not assessed but just directly extrapolated based on the three constituent binary alloys. Considering that the accurate quaternary interdiffusion coefficients were usually absent in the literature, atomic mobilities in fcc Cu–Mn–Ni–Zn alloys were extrapolated based on the assessed atomic mobilities in the 4 ternary boundary systems. On the basis of the obtained mobility parameters, simulations of a series of ternary and quaternary diffusion couple experiments were performed. The concentration profiles and the diffusion paths in diffusion couples were well reproduced by the presently obtained parameters. Furthermore, 3D views of the concentration profiles, diffusion fluxes, chemical potential and quaternary interdiffusion coefficients surfaces were calculated with the obtained atomic mobilities to analyze the uphill diffusion and zero-flux plane phenomenon in some quaternary diffusion couples. In addition, simple criteria for judging whether the uphill diffusion and/or zero-flux plane can occur are also proposed.


* Correspondence address, Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China, Tel.: +86 731 88836213, Fax: +86 731 88710855, E-mail:

References

[1] C.M.Garzon, A.J.Ramirez: Acta Mater. 54 (2006) 3321. 10.1016/j.actamat.2006.03.018 Search in Google Scholar

[2] Y.Du, Y.A.Chang, B.Y.Huang, W.P.Gong, Z.P.Jin, H.H.Xu, Z.H.Yuan, Y.Liu, Y.H.He, F.-Y.Xie: Mater. Sci. Eng., A363 (2003) 140. 10.1016/S0921-5093(03)00624-5 Search in Google Scholar

[3] D.Vielzeuf, A.Saúl: Contrib. Mineral. Petrol. 161 (2011) 683. 10.1007/s00410-010-0557-4 Search in Google Scholar

[4] J.A.Heaney, M.A.Dayananda: Metall. Trans. A17 (1986) 983. 10.1007/BF02661264 Search in Google Scholar

[5] J.O.Andersson, J.Ågren: J. Appl. Phys. 72 (1992) 1350. 10.1063/1.351517 Search in Google Scholar

[6] E.A.Ashour, B.G.Ateya: Electrochim. Acta42 (1997) 243. 10.1016/0013-4686(96)00150-8 Search in Google Scholar

[7] S.Longauer, P.Makroczy, G.Janák, M.Longauerová: Mater. Sci. Eng. A273–275 (1999) 415. Search in Google Scholar

[8] R.Zenging, M.Ceylan: Thermochim. Acta414 (2004) 155. 10.1016/j.tca.2003.12.013 Search in Google Scholar

[9] H.Mehrer: Diffusion in Solid Metals and Alloys, vol 26, Springer, Berlin, Heidelberg, Germany (1990). 10.1007/b37801 Search in Google Scholar

[10] Y.Du, S.H.Liu, L.J.Zhang, H.H.Xu, D.D.Zhao, A.J.Wang, L.C.Zhou: CALPHAD35 (2011) 427. 10.1016/j.calphad.2011.06.007 Search in Google Scholar

[11] W.B.Zhang, Y.Du, L.J.Zhang, H.H.Xu, S.H.Liu, L.Chen: CALPHAD35 (2011) 367. 10.1016/j.calphad.2011.04.009 Search in Google Scholar

[12] S.L.Cui, L.J.Zhang, Y.Du, D.D.Zhao, H.H.Xu, W.Q.Zhang, S.H.Liu: CALPHAD35 (2011) 231. 10.1016/j.calphad.2010.10.002 Search in Google Scholar

[13] T.Takahashi, M.Katoh, Y.Minamino, T.Yamane: Nippon Kinzoku Gakkaishi50 (1986) 243. Search in Google Scholar

[14] T.Takahashi, M.Katoh, Y.Minamino, T.Yamane: Defect. Diffus. Forum95–98 (1993) 641. Search in Google Scholar

[15] K.E.Kansky, M.A.Dayananda: Metall. Trans. A16 (1985) 11231132. 10.1007/BF02811681 Search in Google Scholar

[16] K.N.Kulkarni, A.M.Girgis, L.R.Ram-Mohan, M.A.Dayananda: Philos. Mag. 87 (2007) 853. 10.1080/14786430600993356 Search in Google Scholar

[17] M.A.Dayananda, Y.H.Sohn: Metall. Mater. Trans. A30 (1999) 535. 10.1007/s11661-999-0045-5 Search in Google Scholar

[18] M.A.Dayananda, C.W.Kim: Metall. Trans. A10 (1979) 1333. 10.1007/BF02811989 Search in Google Scholar

[19] M.A.Dayananda: Metall. Trans. A14 (1983) 1851. 10.1007/BF02645555 Search in Google Scholar

[20] J.O.Andersson, L.Höglund, B.Jönsson, J.Ågren, in:G. R.Prudy (ed.), Fundamentals and applications of ternary diffusion, Pergamon Press, New York, (1990) Search in Google Scholar

[21] B.Jönsson: Z. Metallkd. 85 (1994) 502. Search in Google Scholar

[22] K.K.Chang, H.H.Xu, Y.Du, W.H.Sun, J.L.Liang, L.J.Zhang, S.H.Liu, J.Wang: Int. J. Mater. Res. 101 (2010) 1376. 10.3139/146.110421 Search in Google Scholar

[23] A.Borgenstam, A.Engström, L.Höglund, J.Ågren: J. Phase Equilib. 21 (2000) 269. 10.1361/105497100770340057 Search in Google Scholar

[24] Y.J.Liu, L.J.Zhang, Y.Du, D.Yu, D.Liang: CALPHAD33 (2009) 614. 10.1016/j.calphad.2008.12.008 Search in Google Scholar

[25] L.J.Zhang, Y.Du, Q.Chen, I.Steinbach, B.Y.Huang: Int. J. Mater. Res. 101 (2010) 1461. 10.3139/146.110336 Search in Google Scholar

[26] Y.W.Cui, K.Oikawa, R.Kainuma, K.Ishida: J. Phase Equilib. 27 (2006) 333. 10.1007/s11669-006-0005-3 Search in Google Scholar

[27] P.Gupta, A.Cooper: Physica54 (1971) 39. 10.1016/0031-8914(71)90062-0 Search in Google Scholar

[28] C.W.Kim, M.A.Dayananda: Metall. Trans. A15 (1984) 649. 10.1007/BF02644196 Search in Google Scholar

Received: 2013-05-01
Accepted: 2013-07-11
Published Online: 2014-01-11
Published in Print: 2014-01-09

© 2014, Carl Hanser Verlag, München