Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 11, 2014

Atomic mobilities in fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena

  • Weibin Zhang , Lijun Zhang , Yong Du , Shuhong Liu and Chengying Tang


An effective approach to establish the atomic mobility parameters of quaternary Cu-rich fcc Cu–Mn–Ni–Zn alloys is presented through assessments of the critically-reviewed experimental diffusivities available in the literature by means of DICTRA (DIffusion Controlled TRAnsformation) software. In the quaternary Cu-rich fcc Cu–Mn–Ni–Zn alloys, atomic mobilities in ternary fcc Cu–Mn–Ni and Cu–Ni–Zn boundary systems were directly taken from our previous work, while atomic mobilities in ternary fcc Cu–Mn–Zn boudnary system were assessed as a function of temperature and composition in this work. Since no experimental data were available, the atomic mobility database for fcc Ni–Mn–Zn alloys was not assessed but just directly extrapolated based on the three constituent binary alloys. Considering that the accurate quaternary interdiffusion coefficients were usually absent in the literature, atomic mobilities in fcc Cu–Mn–Ni–Zn alloys were extrapolated based on the assessed atomic mobilities in the 4 ternary boundary systems. On the basis of the obtained mobility parameters, simulations of a series of ternary and quaternary diffusion couple experiments were performed. The concentration profiles and the diffusion paths in diffusion couples were well reproduced by the presently obtained parameters. Furthermore, 3D views of the concentration profiles, diffusion fluxes, chemical potential and quaternary interdiffusion coefficients surfaces were calculated with the obtained atomic mobilities to analyze the uphill diffusion and zero-flux plane phenomenon in some quaternary diffusion couples. In addition, simple criteria for judging whether the uphill diffusion and/or zero-flux plane can occur are also proposed.

* Correspondence address, Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China, Tel.: +86 731 88836213, Fax: +86 731 88710855, E-mail:


[1] C.M.Garzon, A.J.Ramirez: Acta Mater. 54 (2006) 3321. 10.1016/j.actamat.2006.03.018Search in Google Scholar

[2] Y.Du, Y.A.Chang, B.Y.Huang, W.P.Gong, Z.P.Jin, H.H.Xu, Z.H.Yuan, Y.Liu, Y.H.He, F.-Y.Xie: Mater. Sci. Eng., A363 (2003) 140. 10.1016/S0921-5093(03)00624-5Search in Google Scholar

[3] D.Vielzeuf, A.Saúl: Contrib. Mineral. Petrol. 161 (2011) 683. 10.1007/s00410-010-0557-4Search in Google Scholar

[4] J.A.Heaney, M.A.Dayananda: Metall. Trans. A17 (1986) 983. 10.1007/BF02661264Search in Google Scholar

[5] J.O.Andersson, J.Ågren: J. Appl. Phys. 72 (1992) 1350. 10.1063/1.351517Search in Google Scholar

[6] E.A.Ashour, B.G.Ateya: Electrochim. Acta42 (1997) 243. 10.1016/0013-4686(96)00150-8Search in Google Scholar

[7] S.Longauer, P.Makroczy, G.Janák, M.Longauerová: Mater. Sci. Eng. A273–275 (1999) 415.Search in Google Scholar

[8] R.Zenging, M.Ceylan: Thermochim. Acta414 (2004) 155. 10.1016/j.tca.2003.12.013Search in Google Scholar

[9] H.Mehrer: Diffusion in Solid Metals and Alloys, vol 26, Springer, Berlin, Heidelberg, Germany (1990). 10.1007/b37801Search in Google Scholar

[10] Y.Du, S.H.Liu, L.J.Zhang, H.H.Xu, D.D.Zhao, A.J.Wang, L.C.Zhou: CALPHAD35 (2011) 427. 10.1016/j.calphad.2011.06.007Search in Google Scholar

[11] W.B.Zhang, Y.Du, L.J.Zhang, H.H.Xu, S.H.Liu, L.Chen: CALPHAD35 (2011) 367. 10.1016/j.calphad.2011.04.009Search in Google Scholar

[12] S.L.Cui, L.J.Zhang, Y.Du, D.D.Zhao, H.H.Xu, W.Q.Zhang, S.H.Liu: CALPHAD35 (2011) 231. 10.1016/j.calphad.2010.10.002Search in Google Scholar

[13] T.Takahashi, M.Katoh, Y.Minamino, T.Yamane: Nippon Kinzoku Gakkaishi50 (1986) 243.Search in Google Scholar

[14] T.Takahashi, M.Katoh, Y.Minamino, T.Yamane: Defect. Diffus. Forum95–98 (1993) 641.Search in Google Scholar

[15] K.E.Kansky, M.A.Dayananda: Metall. Trans. A16 (1985) 11231132. 10.1007/BF02811681Search in Google Scholar

[16] K.N.Kulkarni, A.M.Girgis, L.R.Ram-Mohan, M.A.Dayananda: Philos. Mag. 87 (2007) 853. 10.1080/14786430600993356Search in Google Scholar

[17] M.A.Dayananda, Y.H.Sohn: Metall. Mater. Trans. A30 (1999) 535. 10.1007/s11661-999-0045-5Search in Google Scholar

[18] M.A.Dayananda, C.W.Kim: Metall. Trans. A10 (1979) 1333. 10.1007/BF02811989Search in Google Scholar

[19] M.A.Dayananda: Metall. Trans. A14 (1983) 1851. 10.1007/BF02645555Search in Google Scholar

[20] J.O.Andersson, L.Höglund, B.Jönsson, J.Ågren, in:G. R.Prudy (ed.), Fundamentals and applications of ternary diffusion, Pergamon Press, New York, (1990)Search in Google Scholar

[21] B.Jönsson: Z. Metallkd. 85 (1994) 502.Search in Google Scholar

[22] K.K.Chang, H.H.Xu, Y.Du, W.H.Sun, J.L.Liang, L.J.Zhang, S.H.Liu, J.Wang: Int. J. Mater. Res. 101 (2010) 1376. 10.3139/146.110421Search in Google Scholar

[23] A.Borgenstam, A.Engström, L.Höglund, J.Ågren: J. Phase Equilib. 21 (2000) 269. 10.1361/105497100770340057Search in Google Scholar

[24] Y.J.Liu, L.J.Zhang, Y.Du, D.Yu, D.Liang: CALPHAD33 (2009) 614. 10.1016/j.calphad.2008.12.008Search in Google Scholar

[25] L.J.Zhang, Y.Du, Q.Chen, I.Steinbach, B.Y.Huang: Int. J. Mater. Res. 101 (2010) 1461. 10.3139/146.110336Search in Google Scholar

[26] Y.W.Cui, K.Oikawa, R.Kainuma, K.Ishida: J. Phase Equilib. 27 (2006) 333. 10.1007/s11669-006-0005-3Search in Google Scholar

[27] P.Gupta, A.Cooper: Physica54 (1971) 39. 10.1016/0031-8914(71)90062-0Search in Google Scholar

[28] C.W.Kim, M.A.Dayananda: Metall. Trans. A15 (1984) 649. 10.1007/BF02644196Search in Google Scholar

Received: 2013-05-01
Accepted: 2013-07-11
Published Online: 2014-01-11
Published in Print: 2014-01-09

© 2014, Carl Hanser Verlag, München

Downloaded on 30.5.2023 from
Scroll to top button