Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 11, 2014

Effect of rare earth Y addition on two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy

  • Xinquan Jiao , Shuiyuan Yang and Yu Su

Abstract

The microstructures, martensitic transformation, mechanical and shape memory properties of (Ni53Mn22Co6Ga19)100–xYx (x = 0, 0.1, 0.3) high-temperature shape memory alloys were investigated. It was found that small Y addition results in the refinement of grain size and the increase of γ phase volume fraction. These changes can effectively improve the tensile ductility and fracture strength of two-phase Ni53Mn22Co6-Ga19 alloy, up to the maximum values of 10.1 % and 592 MPa respectively at x = 0.1. However, it is proposed that Y(Ni, Mn)4Ga precipitate forms in the alloys with the addition of Y, and its amount increases with further increasing Y addition. The growth of the Y(Ni, Mn)4Ga precipitate results in a decrease in the tensile ductility at x = 0.3. Results further show that shape memory properties of the studied alloys are closely related to the refinement of grain size and the alloy yield strength. While adding 0.1 at.% of Y, the shape memory effect and recovery rate decrease, resulting from the refinement of grain size, compared to those of two-phase Ni53Mn22Co6Ga19 alloy. Subsequently they increase with further increasing Y content to 0.3 at.% due to the decrease in the alloy yield strength.


* Correspondence address, Assist. Prof. Shuiyuan Yang, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China, Tel.: +86-18059243800, Fax: +86-592-2187966, E-mail:

References

[1] V.A.Chernenko, E.Cesari, V.V.Kokorin, I.N.Vitenko: Scripta Metall. Mater. 33 (1995) 12391244. 10.1016/0956-716X(95)00370-BSearch in Google Scholar

[2] X.Jin, M.Marioni, D.Bono, S.M.Allen, R.C.O'Handley, T.Y.Hsu: J. Appl. Phys. 91 (2002) 82228225. 10.1063/1.1419206Search in Google Scholar

[3] C.B.Jiang, G.Feng, S.K.Gong, H.B.Xu: Mater. Sci. Eng. A342 (2003) 231235. 10.1016/S0921-5093(02)00288-5Search in Google Scholar

[4] H.B.Xu, Y.Q.Ma, C.B.Jiang: Appl. Phys. Lett. 82 (2003) 32063208. 10.1063/1.1541098Search in Google Scholar

[5] Y.Q.Ma, C.B.Jiang, G.Feng, H.B.Xu: Scripta Mater. 48 (2003) 365369. 10.1016/S1359-6462(02)00450-5Search in Google Scholar

[6] Y.Q.Ma, L.H.Xu, Y.Li, C.B.Jiang, H.B.Xu, Y.K.Lee: Z. Metallkd. 96 (2005) 843846.10.3139/146.101110Search in Google Scholar

[7] Y.Xin, Y.Li, L.Chai, H.B.Xu: Scripta Mater. 57 (2007) 599601. 10.1016/j.scriptamat.2007.06.010Search in Google Scholar

[8] S.Y.Yang, Y.Q.Ma, H.F.Jiang, X.J.Liu: Intermetallics19 (2011) 225228. 10.1016/j.intermet.2010.08.009Search in Google Scholar

[9] Y.Q.Ma, S.Y.Yang, Y.Liu, X.J.Liu: Acta Mater. 57 (2009) 32323241. 10.1016/j.actamat.2009.01.025Search in Google Scholar

[10] S.Y.Yang, Y.Liu, C.P.Wang, Z.Shi, X.J.Liu: J. Alloys Compd. 560 (2013) 8491. 10.1016/j.jallcom.2013.01.128Search in Google Scholar

[11] S.Y.Yang, Y.Liu, C.P.Wang, X.J.Liu: Acta Mater. 60 (2012) 42554267. 10.1016/j.actamat.2011.10.030Search in Google Scholar

[12] K.Tsuchiya, A.Tsutsumi, H.Ohtsuka, M.Umemoto: Mater. Sci. Eng. A378 (2004) 370376. 10.1016/j.msea.2003.11.076Search in Google Scholar

[13] W.Cai, L.Gao, A.L.Liu, J.H.Sui, Z.Y.Gao: Scripta Mater. 57 (2007) 659662. 10.1016/j.scriptamat.2007.05.041Search in Google Scholar

[14] J.H.Sui, X.Zhang, L.Gao, W.Cai: J. Alloys Compd. 509 (2011) 86928699. 10.1016/j.jallcom.2011.06.013Search in Google Scholar

[15] L.Gao, W.Cai, A.L.Liu, L.C.Zhao: J. Alloys Compd. 425 (2006) 314317. 10.1016/j.jallcom.2006.01.037Search in Google Scholar

[16] W.Cai, L.Gao, Z.Y.Gao: J. Mater. Sci. 42 (2007) 92169220. 10.1007/s10853-006-0465-1Search in Google Scholar

[17] L.Gao, J.H.Sui, W.Cai: J. Magn. Magn. Mater. 320 (2008) 6367. 10.1016/j.jmmm.2007.05.006Search in Google Scholar

[18] L.Gao, Z.Y.Gao, W.Cai, L.C.Zhao: Mater. Sci. Eng. A438 (2006) 10771080. 10.1016/j.msea.2006.02.190Search in Google Scholar

[19] L.Gao, J.H.Sui, W.Cai, Z.Y.Gao: Solid State Commun. 149 (2009) 257260. 10.1016/j.ssc.2008.10.030Search in Google Scholar

[20] G.E.Dieter: Mechanical metallurgy, McGraw-Hill Book Company, New York (1986) pp. 29510.5962/bhl.title.35895Search in Google Scholar

[21] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Ohio (1990).Search in Google Scholar

[22] Y.Q.Ma, C.B.Jiang, Y.Li, H.B.Xu, C.P.Wang, X.J.Liu: Acta Mater. 55 (2007) 15331541. 10.1016/j.actamat.2006.10.014Search in Google Scholar

[23] N.Lanska, O.Sōderberg, A.Sozinov, Y.Ge, K.Ullakko, V.K.Lindroos: J. Appl. Phys. 95 (2004) 80748078. 10.1063/1.1748860Search in Google Scholar

Received: 2013-04-09
Accepted: 2013-07-27
Published Online: 2014-01-11
Published in Print: 2014-01-09

© 2014, Carl Hanser Verlag, München

Downloaded on 31.3.2023 from https://www.degruyter.com/document/doi/10.3139/146.110993/html
Scroll to top button