Accessible Requires Authentication Published by De Gruyter January 11, 2014

Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)

Jianwei Ren, Dave E. C. Rogers, Tshiamo Segakweng, Henrietta W. Langmi, Brian C. North, Mkhulu Mathe and Dmitri Bessarabov

Abstract

A simple thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5) is reported. Phase crystallinity, pore characteristics and hydrogen storage capacities of the resulting crystals were investigated. It is shown that the structural transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5) could be induced by simply employing the optimal thermal treatment conditions of 200 °C for 48 h in open air. The resultant relatively lower specific surface area of MOF-5 crystals compared to MOF-69c was in agreement with the increased pore diameter and decreased hydrogen storage capacity at 1 bar and 77 K.


* Correspondence address, Dr. Jianwei Ren, HySA Infrastructure Centre of Competence, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa, Tel.: +27 128412967, Fax: +27 128412135, E-mail:

References

[1] J.L.C.Rowsell, O.M.Yaghi: Angew. Chem. Int. Ed. 33 (2005) 4670. PMid: 16028207; 10.1002/anie.200462786 Search in Google Scholar

[2] D.Bessarabov, F.van Niekerk, F.van der Merwe, M.Vosloo, B.North, M.Mathe: Energy Procedia29 (2012) 42. 10.1016/j.egypro.2012.09.007 Search in Google Scholar

[3] U.Müller, M.Schubert, F.Teich, H.Puetter, K.Schierle-Arndt, J.Pastré: J. Mater. Chem. 16 (2006) 626. 10.1039/b511962f Search in Google Scholar

[4] J.H.Liao, T.J.Lee, C.T.Sun: Inorg. Chem. Commun. 9 (2006) 201. 10.1016/j.inoche.2005.10.030 Search in Google Scholar

[5] T.Loiseau, H.Muguerra, G.Ferey, M.Haouas, F.Taulelle: J. Solid State Chem. 178 (2005) 621. 10.1016/j.jssc.2004.12.004 Search in Google Scholar

[6] N.L.Rosi, J.Kim, M.Eddaoudi, B.Chen, M.O'Keeffe, O.M.Yaghi: J. Am. Chem. Soc. 127 (2005) 1504. PMid: 15686384; 10.1021/ja045123o Search in Google Scholar

[7] S.Hausdorf, J.Wagler, R.Mossing, F.O.R.L.Mertens: J. Phys. Chem. A. 112 (2008) 7567. PMid: 18652430; 10.1021/jp7110633 Search in Google Scholar

[8] J.Rouquerol, P.Llewellyn, F.Rouquerol: Stud. Surf. Sci. Catal. 160 (2007) 49. 10.1016/S0167-2991(07)80008-5 Search in Google Scholar

[9] Y.S.Bae, A.Ö.Yazaydln, R.Q.Snurr: Langmuir26 (2010) 5475. 10.1021/la100449z Search in Google Scholar

[10] K.S.Walton, R.Q.Snurr: J. Am. Chem. Soc. 129 (2007) 8552. PMid: 17580944; 10.1021/ja071174k Search in Google Scholar

[11] S.S.Kaye, A.Dailly, O.M.Yaghi, J.R.Long: J. Am. Chem. Soc. 129 (2007) 14176. PMid: 17967030; 10.1021/ja076877g Search in Google Scholar

[12] H.Y.Lu, S.P.Zhu: Interfacial Eur. J. Inorg. Chem. 8 (2013) 1294. 10.1002/ejic.201201009 Search in Google Scholar

[13] J.Hafizovic, M.Bjørgen, U.Olsbye, P.D.C.Dietzel, S.Bordiga, C.Prestipino, C.Lamberti, K.P.Lillerud: J. Am. Chem. Soc. 129 (2007) 3612. PMid: 17341071; 10.1021/ja0675447 Search in Google Scholar

[14] B.Panella, M.Hirscher, H.Pütter, U.Müller: Adv. Funct. Mater. 16 (2006) 520. 10.1002/adfm.200500561 Search in Google Scholar

[15] O.M.Yaghi, M.O'Keeffe, N.W.Ockwig, H.K.Chae, M.Eddaoudi, J.Kim: Nature423 (2003) 705. PMid: 12802325; 10.1038/nature01650 Search in Google Scholar

[16] C.S.Tsao, M.S.Yu, T.Y.Chung, H.C.Wu, C.Y.Wang, K.S.Chang, H.L.Chen: J. Am. Chem. Soc. 129 (2007) 15997. PMid: 18044895; 10.1021/ja0752336 Search in Google Scholar

[17] H.Li, M.Eddaousi, M.O'Keeffe, O.M.Yaghi: Nature402 (1999) 276. 10.1038/46248 Search in Google Scholar

[18] J.L.C.Rowsell, A.R.Millward, K.S.Park, O.M.Yaghi: J. Am. Chem. Soc. 126 (2004) 5666. PMid: 15125649; 10.1021/ja049408c Search in Google Scholar

[19] J.Yang, A.Grzech, F.M.Mulder, T.J.Dingemans: Chem. Commun. 47 (2011) 5244. PMid: 21359292; 10.1039/c0cc03043k Search in Google Scholar

[20] M.Sabo, A.Henschel, H.Fröde, S.Kaskel: J. Mater. Chem. 17 (2007) 3827. 10.1039/b706432b Search in Google Scholar

[21] B.D.Adams, C.K.Ostrom, S.Chen, A.C.Chen: J. Phys. Chem. C114 (2010) 19875. 10.1021/jp1085312 Search in Google Scholar

[22] J.G.Nguyen, S.M.Cohen: J. Am. Chem. Soc. 132 (2010) 4560. PMid: 20232871; 10.1021/ja100900c Search in Google Scholar

[23] U.Ravon, M.Savonnet, S.Aguado, M.E.Domine, E.Janneau, D.Farrusseng: Micro. Meso. Mater. 129 (2010) 319. 10.1016/j.micromeso.2009.06.008 Search in Google Scholar

[24] S.Hausdorf, F.Baitalow, J.Seidel, F.O.R.L.Mertens: J. Phys. Chem. A111 (2007) 4259. PMid: 17455926; 10.1021/jp0708291 Search in Google Scholar

[25] B.Chen, X.J.Wang, Q.F.Zhang, X.Y.Xi, J.J.Cai, H.Qi, S.Shi, J.Wang, D.Yuan, M.Fang: J. Mater. Chem. 20 (2010) 3758. 10.1039/b917558j Search in Google Scholar

Received: 2013-04-26
Accepted: 2013-07-11
Published Online: 2014-01-11
Published in Print: 2014-01-09

© 2014, Carl Hanser Verlag, München