Accessible Unlicensed Requires Authentication Published by De Gruyter January 11, 2014

Nanoscratch characterization of indium nitride films

Derming Lian

Abstract

In this study we used RF plasma-assisted molecular beam epitaxy for the epitaxial growth of single-crystalline indium nitride (InN) thin films on aluminum nitride buffer layers/Si (111) substrates. We then used scratch techniques to study the influence of the c-axis orientation of the InN films and the beam interactions on the tribological performance of these samples. When grown at 440, 470, and 500 °C, the coefficients of friction were 0.18, 0.22, and 0.26, respectively, under a normal force (Fn) of 2000 μN; 0.19, 0.23, and 0.27, respectively, under a value of Fn of 4000 μN; and 0.21, 0.24, and 0.28, respectively, under a value of Fn of 6000 μN. These measured values increased slightly upon increasing the growth temperature because of the resulting smaller sizes of the apertures and/or pores in the inner films. The sliding resistance of the ploughed area was observed. The contact sliding line became increasingly noticeable upon increasing the value of Fn; the plot of the friction with respect to the penetration depth revealed a significant relation in its adhesion properties presentation.


* Correspondence address, Dr. Derming Lian, No. 35, Lane 215, Sec. 1, Chung-Shan Road, Taiping City, Taichung County 411, Taiwan, R.O.C., Tel.: (+886)(4) 23924505, Fax: (+886)(4) 23930681, E-mail:

References

[1] I.Akasaki, H.Amano, N.Koide, M.Kotaki, K.Manabe: Phys. B185 (1993) 428. 10.1016/0921-4526Search in Google Scholar

[2] S.Nakamura, M.Senoh, T.Mukai: Jpn. J. Appl. Phys. 32 (1993) L8.Search in Google Scholar

[3] S.Yamaguchi, M.Kariya, S.Nitta, T.Takeuchi, C.Wetzel, H.Amano, I.Akasaki: J. Appl. Phys. 85 (1999) 7682. 10.1063/1.370546Search in Google Scholar

[4] A.G.Bhuiyan, A.Hashimoto, A.Yamamoto: J. Appl. Phys. 94 (2003) 2779. 10.1063/1.1595135Search in Google Scholar

[5] V. Ya.Malakhov: Sol. Energy Mater. Sol. Cells. 76 (2003) 637. 10.1016/S0927-0248(02)00273-8Search in Google Scholar

[6] B.Maleyre, S.Ruffenach, O.Briot, A.van der Lee: Superlattices Microstruct. 36 (2004) 527. 10.1016/j.spmi.2004.09.052Search in Google Scholar

[7] B.Maleyre, S.Ruffenach, O.Briot: J. Cryst. Growth269 (2004) 15. 10.1016/j.jcrysgro.2004.05.029Search in Google Scholar

[8] A.Keyvani, M.Saremi, M.R.Saeri: Int. J. Mater. Res. 12 (2012) 1533. 10.3139/146.110817Search in Google Scholar

[9] V.Woods, N.Dietz: Mater. Sci. Eng. B127 (2006) 239. 10.1016/j.mseb.2005.10.032Search in Google Scholar

[10] Y.Saito, H.Harima, E.Kurimoto, T.Yamaguchi, N.Teraguchi, A.Suzuki, T.Araki, Y.Nanishi: Phys. Stat. Sol. (b)234 (2002) 796. 10.1002/1521-3951(200212)234:3<796::AID-PSSB796>3.0.CO;2-HSearch in Google Scholar

[11] Y.Saito, T.Yamaguchi, T.Yamaguchi, N.Teraguchi, A.Suzuki, T.Araki, Y.Nanishi: Phys. Stat. Sol. (b)240 (2003) 429. 10.1002/pssb.200303404Search in Google Scholar

[12] A.Yamamoto, Y.Yamauchu, M.Ohkubo, A.Hashimoto, T.Saitoh: Solid-State Electron. 41 (1997) 149. 10.1016/S0038-1101(96)00156-6Search in Google Scholar

[13] S.Gwo, C.L.Wu, C.H.Shen, W.H.Chang, T.M.Hsu, J.S.Wang, J.T.Hsu: Appl. Phys. Lett. 84 (2004) 3765. 10.1063/1.1738183Search in Google Scholar

[14] T.Yodo, H.Ando, D.Nosei, Y.Harada: Phys. Stat. Sol. (b)228 (2001) 21. 10.1002/1521-3951(200111)228:1<21::AID-PSSB21>3.0.CO;2-RSearch in Google Scholar

[15] S.E.Grillo, M.Ducarroir, M.Nadal, E.Tournié, J.P.Faurie: J. Phys. D: Appl. Phys. 36 (2003) L5.Search in Google Scholar

[16] I.Zarudi, J.Zou, L.C.Zhang: Appl. Phys. Lett. 82 (2003) 874. 10.1063/1.1541110Search in Google Scholar

[17] C.R.Taylor, E.A.Stach, G.Salamo, A.P.Malshe: Appl. Phys. Lett. 8710.1063/1.2009825Search in Google Scholar

[18] B.Haberl, J.E.Bradby, S.Ruffell, J.S.Willams, P.Munroe: J. Appl. Phys. 100 (2006) 013520. 10.1063/1.2210767Search in Google Scholar

[19] S.Basu, M.W.Barsoum, A.D.Williams, T.D.Moustakas: J. Appl. Phys. 101 (2007) 083522. 10.1063/1.2719016Search in Google Scholar

[20] H.Wen, X.Wang, L.Li: J. Appl. Phys. 10010.1063/1.2220646Search in Google Scholar

[21] X.Li, B.Bhushan: Mater. Charact. 48 (2002) 11. 10.1016/S1044-5803(02)00192-4Search in Google Scholar

[22] Q.Guo, A.Yoshida: Jpn. J. Appl. Phys. 33 (1994) 90. 10.1143/JJAP.33.90Search in Google Scholar

[23] J.H.Edgar, C.H.Wei, D.T.Smith, T.J.Kistenmacher, W.A.Bryden: J. Mater. Sci. Mater. Electron. 8 (1997) 307. 10.1023/A:1018587306451Search in Google Scholar

[24] C.H.Tsai: Vacuum86 (2012) 1328. 10.1016/j.vacuum.2011.12.008Search in Google Scholar

[25] H.C.Wen, C.S.Yang, W.C.Chou: Appl. Surf. Sci. 256 (2010) 2128. 10.1016/j.apsusc.2009.09.059Search in Google Scholar

[26] M.H.Lin, H.C.Wen, Y.R.Jeng, C.P.Chou: Nanoscale Res. Lett. 5 (2010) 1812. 10.1007/s11671-009-9456-xSearch in Google Scholar

[27] M.H.Lin, H.C.Wen, Z.C.Chang, S.C.Wu, W.F.Wu, C.P.Cho: Surf. Interface Anal. 43 (2010) 918. 10.1002/sia.3658Search in Google Scholar

[28] M.C.Lee, H.C.Lin, Y.C.Pan, C.K.Shu, J.Ou, W.H.Chen, W.K.Chen: Appl. Phys. Lett. 73 (1998) 2606. 10.1063/1.121733Search in Google Scholar

[29] Y.Nanishi, Y.Saito, T.Yamaguchi: Jpn. J. Appl. Phys. 42 (2003) 2549. 10.1143/JJAP.42.2549Search in Google Scholar

[30] X.Li, B.Bhushan: Mater. Charact. 48 (2002) 11. 10.1016/S1044-5803(02)00192-4Search in Google Scholar

[31] Y.M.Chang, Z.C.Chang, D.Lian, C.S.Yang, W.H.Yau, C.H.Tsai, W.F.Wu, C.P.Chou: Appl. Surf. Sci. 257 (2010) 37. 10.1016/j.apsusc.2010.06.027Search in Google Scholar

[32] C.H.Tsai: Appl. Surf. Sci. 256 (2010) 3789. 10.1016/j.apsusc.2010.01.027Search in Google Scholar

[33] D.C.Look, H.Lu, W.J.Schaff, J.Jasinski, Z.Liliental-Weber: Appl. Phys. Lett. 80 (2002) 258. 10.1063/1.1432742Search in Google Scholar

[34] W.N.Hsu, T.S.Shih: Appl. Surf. Sci. 261 (2012) 610. 10.1016/j.apsusc.2012.08.064Search in Google Scholar

[35] A.G.Bhuiyan, A.Hashimoto, A.Yamamoto: J. Appl. Phys. 94 (2003) 2779. 10.1063/1.1595135Search in Google Scholar

Received: 2013-03-13
Accepted: 2013-07-08
Published Online: 2014-01-11
Published in Print: 2014-01-09

© 2014, Carl Hanser Verlag, München