Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 7, 2014

Experimental determination of a representative texture and insight into the range of significant neighboring grain interactions via orientation and misorientation statistics

  • Laurence Bodelot and Guruswami Ravichandran


The mechanical response of polycrystalline metallic materials is heavily influenced by the orientations of their grains. To predict polycrystalline behavior more accurately, crystal plasticity models account for grain orientations and also, sometimes, for interactions between neighboring grains. However, these models often lack sound experimental input or validation. Furthermore, experimental studies themselves rarely tackle simply the concept of representativity in terms of texture; neither do they try to analyze up to what range neighbor interactions appear to be significant. In this article, we address both aforementioned issues in a single and easily implementable framework by performing extensive statistical analyses of discrete raw orientation and misorientation data respectively, obtained by means of electron back-scattered diffraction on thousand-grain microstructures. First, we show that the analysis of orientation statistics helps determine whether an experimental dataset can be considered as a microstructurally representative volume element in terms of texture. Second, we explain how the statistical processing of misorientations can shed some light on the range of neighbors that have a significant weight in the misorientation distributions and possibly on the grain interactions.

* Correspondence address, Dr. Laurence Bodelot, Laboratoire de Mécanique des Solides, C.N.R.S. UMR7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France, Tel.: +33(0)169 33 57 46, E-mail:


[1] E.Schmid, W.Boas: Plasticity of Crystals with Special Reference to Metals, F.A. Hughes, London (1950) 353.Search in Google Scholar

[2] G.Cailletaud: Adv. Eng. Mater.11 (2009) 710. 10.1002/adem.200900064Search in Google Scholar

[3] G.R.Canova, H.R.Wenk, A.Molinari: Acta Metall. Mater.40 (1992) 1519. 10.1016/0956-7151(92)90095-VSearch in Google Scholar

[4] R.Brenner, R.A.Lebensohn, O.Castelnau: Int. J. Solids Struct.46 (2009) 3018. 10.1016/j.ijsolstr.2009.04.001Search in Google Scholar

[5] M.Miodownik, A.W.Godfrey, E.A.Holm, D.A.Hughes: Acta Mater.47 (1999) 2661. 10.1016/S1359-6454(99)00137-8Search in Google Scholar

[6] M.Baniassadi, H.Garmestani, D.S.Li, S.Ahzi, M.Khaleel, X.Sun: Acta Mater.59 (2011) 30. 10.1016/j.actamat.2010.08.012Search in Google Scholar

[7] R.A.Lebensohn, R.Brenner, O.Castelnau, A.D.Rollett: Acta Mater.56 (2008) 3914. 10.1016/j.actamat.2008.04.016Search in Google Scholar

[8] D.Saylor, J.Fridy, B.El-Dasher, K.-Y.Jung, A.D.Rollett: Metall. Mater. Trans. A35 (2004) 1969. 10.1007/s11661-004-0146-0Search in Google Scholar

[9] M.Groeber, S.Ghosh, M.D.Uchic, D.M.Dimiduk: Acta Mater.56 (2008) 1257. 10.1016/j.actamat.2007.11.040Search in Google Scholar

[10] M.Groeber, S.Ghosh, M.D.Uchic, D.M.Dimiduk: Acta Mater.56 (2008) 1274. 10.1016/j.actamat.2007.11.040Search in Google Scholar

[11] A.Molinari, G.R.Canova, S.Ahzi: Acta Metall.35 (1987) 2983. 10.1016/0001-6160(87)90297-5Search in Google Scholar

[12] F.Barbe, L.Decker, D.Jeulin, G.Cailletaud: Int. J. Plasticity17 (2001) 513. 10.1016/S0749-6419(00)00061-9Search in Google Scholar

[13] S.Forest, G.Cailletaud, D.Jeulin, F.Feyel, I.Galliet, V.Mounoury, S.Quilici: Mec. Ind.3 (2002) 439.Search in Google Scholar

[14] R.A.Lebensohn: Acta Mater.49 (2001) 2723. 10.1016/S1359-6454(01)00172-0Search in Google Scholar

[15] A.J.Beaudoin, P.R.Dawson, K.K.Mathur, U.F.Kocks: Int. J. Plast.11 (1995) 501. 10.1016/S0749-6419(99)80003-5Search in Google Scholar

[16] G.Cailletaud, S.Forest, D.Jeulin, F.Feyel, I.Galliet, V.Mounoury, S.Quilici: Comp. Mater. Sci.27 (2003) 351. 10.1016/S0927-0256(03)00041-7Search in Google Scholar

[17] G.B.Sarma, P.R.Dawson: Acta Mater.44 (1996) 1937. 10.1016/1359-6454(95)00309-6Search in Google Scholar

[18] S.Quilici, S.Forest, G.Cailletaud: J. Phys. IV France08 (1998) Pr8325. 10.1051/jp4:1998840Search in Google Scholar

[19] D.Deka, D.Joseph, S.Ghosh, M.Mills: Metall. Mater. Trans. A37 (2006) 1371. 10.1007/s11661-006-0082-2Search in Google Scholar

[20] C.Liu: Exp. Mech.45 (2005) 238. 10.1007/BF02427947Search in Google Scholar

[21] C.Efstathiou, H.Sehitoglu, J.Lambros: Int. J. Plast.26 (2010) 93. 10.1016/j.ijplas.2009.04.006Search in Google Scholar

[22] K.Davut, S.Zaefferer: Metall. Mater. Trans. A41 (2010) 2187. 10.1007/s11661-010-0315-2Search in Google Scholar

[23] S.I.Wright, M.M.Nowell, J.F.Bingert: Metall. Mater. Trans. A38 (2007) 1845. 10.1007/s11661-007-9226-2Search in Google Scholar

[24] T.Baudin, J.Jura, R.Penelle, J.Pospiech: J. Appl. Crystallogr.28 (1995) 582. 10.1107/S0021889895004432Search in Google Scholar

[25] A.Brahme, Y.Staraselski, K.Inal, R.K.Mishra: Metall. Mater. Trans. A43 (2012) 5298. 10.1007/s11661-012-1364-5Search in Google Scholar

[26] A.Saai, H.Louche, L.Tabourot, H.J.Chang: Mech. Mater.42 (2010) 275. 10.1016/j.mechmat.2009.11.011Search in Google Scholar

[27] Z.Zhao, M.Ramesh, D.Raabe, A.M.Cuitiño, R.Radovitzky: Int. J. Plast.24 (2008) 2278. 10.1016/j.ijplas.2008.01.002Search in Google Scholar

[28] M.R.Bache, F.P.E.Dunne, C.Madrigal: J. Strain Anal. Eng.45 (2010) 391. 10.1243/03093247JSA594Search in Google Scholar

[29] J.A.Venables, C.J.Harland: Phil. Mag.27 (1973) 1193. 10.1080/14786437308225827Search in Google Scholar

[30] D.J.Dingley, K.Z.Baba-Kishi, V.Randle: Atlas of Backscattering Kikuchi Diffraction Patterns, Institute of Physics Publishing, Bristol (1995) 135.Search in Google Scholar

[31] H.J.Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworth-Heinemann, London (1982) 593.10.1016/B978-0-408-10642-9.50019-2Search in Google Scholar

[32] U.F.Kocks, C.N.Tome, H.-R.Wenk: Texture and Anisotropy: Preferred Orientations in Polycrystals, Cambridge Press University, Cambridge, (1998) 692.Search in Google Scholar

[33] O.Engler, V.Randle: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC Press, London (2000) 488.10.1201/9781482287479Search in Google Scholar

[34] P.Neumann: Texture Microstruct. 14–18, (1991) 53.10.1155/TSM.14-18.53Search in Google Scholar

[35] F.C.Frank: Metall. Trans. A19 (1988) 403. 10.1007/BF02649253Search in Google Scholar

[36] Oxford Instruments: HKL Channel 5 Manual (2007) 475.Search in Google Scholar

[37] M.Humbert, N.Gey, J.Muller, C.Esling: J. Appl. Crystallogr.29 (1996) 662. 10.1107/S0021889896006693Search in Google Scholar

[38] Dassault Sytemes Simulia: Abaqus/CAE6.11-1 (2011).Search in Google Scholar

[39] J.Pospiech, K.Lücke, K.Sztwiertnia: Acta Metall. Mater.41 (1993) 305. 10.1016/0956-7151(93)90361-USearch in Google Scholar

[40] C.G.Khatri, K.V.Mardia: J. Roy. Stat. Soc. B39 (1977) 95.Search in Google Scholar

[41] N.C. KriegerLassen, D. JuulJensen, K.Conradsen: Acta Crystallogr. A50 (1994) 741. 10.1107/S010876739400437XSearch in Google Scholar

[42] A.P.Sutton: Phil. Mag. Lett.74 (1996) 389. 10.1080/095008396180137Search in Google Scholar

[43] K.Pearson: Phil. Mag. Series 550 (1900) 157. 10.1080/14786440009463897Search in Google Scholar

[44] W.H.Press, B.P.Flannery, S.A.Teukolsky, W.T.Vetterling: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing1 (1992) 963.Search in Google Scholar

[45] E.B.Wilson, M.M.Hilferty: Proc. Nat. Acad. Sci. USA17 (1931) 684. 10.1073/pnas.17.12.684Search in Google Scholar

[46] H.Weiland: Acta Metall. Mater.40 (1992) 1083. 10.1016/0956-7151(92)90086-TSearch in Google Scholar

[47] B.Beausir, C.Fressengeas, N.P.Gurao, L.S.Tóth, S.Suwas: Acta Mater.57 (2009) 5382. 10.1016/j.actamat.2009.07.008Search in Google Scholar

[48] A.Kumar, P.R.Dawson: Acta Mater.48 (2000) 2719. 10.1016/S1359-6454(00)00044-6Search in Google Scholar

Received: 2013-05-06
Accepted: 2013-08-20
Published Online: 2014-02-07
Published in Print: 2014-02-10

© 2014, Carl Hanser Verlag, München

Downloaded on 10.6.2023 from
Scroll to top button