Abstract
Nanocrystalline merwinite was successfully synthesized by mechanical activation of a mixture of magnesium hydroxide, calcium oxide and silica gel powders followed by heat treatment. The phase development and various physical properties were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, simultaneous thermal analysis, particle size analysis and transmission electron microscopy. The results showed that formation of merwinite in annealed powders was enhanced by increasing the milling time. Nanocrystalline merwinite powder with an average crystallite size of about 36 nm was obtained after 30 hours of ball milling and subsequent annealing in 900 °C for 1 hour.
References
[1] C.Wu, J.Chang: J. Biomed. Mater. Res.83 (2007) 153. 10.1002/jbm.b.30779Search in Google Scholar
[2] T.Kokubo: J. Biomaterials12 (2) (1991) 155. 10.1016/0142-9612(91)90194-FSearch in Google Scholar
[3] L.Xu, G.Yu, E.Zhang, F.Pan, K.Yang: J. Biomed. Mater. Res.83 (2007) 703. 10.1002/jbm.a.31273Search in Google Scholar PubMed
[4] Z.Li, X.Gu, S.Lou, Y.Zheng: J. Biomaterials29 (2008) 1329. 10.1016/j.biomaterials.2007.12.021Search in Google Scholar PubMed
[5] M.Hafezi-Ardakani, F.Moztarzadeh, M.Rabiee, A.Talebi, M.Abasi-Shahni, F.Fesahat, F.Sadeghian: J. Ceram. Proc. Res.11 (2010) 765.Search in Google Scholar
[6] J.Ou, Y.Kang, Z.Huang, X.Chen, J.Wu, R.Xiao, G.Yin: Biomed. Mater.3 (2008) 015015. 10.1088/1748-6041/3/1/015015Search in Google Scholar PubMed
[7] J.Ou, G.F.Yin, D.L.Zhou, X.C.Chen, Y.D.Yao, W.Z.Yang, B.L.Wu, M.Xue, J.Cui, W.F.Zhu, Y.Q.Kang: Key Eng. Mater.330 (2007) 67. 10.4028/www.scientific.net/KEM.330-332.67Search in Google Scholar
[8] M.Hafezi-Ardakani, F.Moztarzadeh, M.Rabiee, A.Talebi: Ceram. Int.37 (2011) 175. 10.1016/j.ceramint.2010.08.034Search in Google Scholar
[9] M.Abbasi-Shahni, S.Hesaraki, A.Behnam-Ghader, M.Hafezi-Ardakani: Key Eng. Mater.493 (2012) 582.Search in Google Scholar
[10] M.Hafezi-Ardakani, F.Kavian, F.Moztarzadeh, M. BaghabanEslaminejad, A.Zamanian, F.Bagheri: Key Eng. Mater.493 (2012) 718.Search in Google Scholar
[11] T.D.Shen, C.C.Koch, T.L.McCormick, R.J.Nemanich, J.Y.Huang, J.G.Huang: J. Mater. Res.10 (1995) 139. 10.1557/JMR.1995.0139Search in Google Scholar
[12] E.Gaffet, L.Mazerolles, P.Berthet, D.Michel: Mater. Sci. Forum235 (1996) 103–108).10.4028/www.scientific.net/MSF.235-238.103Search in Google Scholar
[13] G.J.Fan, F.Q.Guo, Z.Q.Hu, M.X.Quan, K.Lu: Phys. Rev.55 (1997) 11010. 10.1103/PhysRevB.55.11010Search in Google Scholar
[14] G.Zhou, H.Bakker: Phys. Rev.49 (18) (1994) 12507. 10.1103/PhysRevB.49.12507Search in Google Scholar
[15] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (9) (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar
[16] G.K.Williamson, W.H.Hall: Acta Metall.1 (1953) 22. 10.1016/0001-6160(53)90006-6Search in Google Scholar
[17] F.Tavangarian, R.Emadi: Mater. Lett.65 (15–16) (2011) 2354.10.1016/j.matlet.2011.04.108Search in Google Scholar
[18] F.Tavangarian, R.Emadi: J. Alloys Compd.485 (1–2) (2009) 648.10.1016/j.jallcom.2009.06.051Search in Google Scholar
[19] P.J.Anderson, R.F.Horlock: Trans. Faraday Soc.58 (1962) 1993. 10.1039/tf9625801993Search in Google Scholar
[20] F.Tavangarian, R.Emadi: Powder Technol.203 (2010) 180. 10.1016/j.powtec.2010.05.007Search in Google Scholar
[21] F.Tavangarian, R.Emadi: J. Alloys Compd.489 (2) (2010) 600. 10.1016/j.jallcom.2009.09.120Search in Google Scholar
[22] F.Tavangarian, R.Emadi: Int. J. Mod. Phys. B24 (03) (2010) 343. 10.1142/S0217979210053987Search in Google Scholar
[23] F.Tavangarian, R.Emadi, A.Shafyei: Powder Technol.198 (3) (2010) 412. 10.1016/j.powtec.2009.12.007Search in Google Scholar
[24] F.Tavangarian, R.Emadi: Mater. Res. Bull.45 (4) (2010) 388. 10.1016/j.materresbull.2009.12.032Search in Google Scholar
[25] C.Suryanarayana: Prog. Mater. Sci.46 (1) (2001) 1. 10.1016/S0079-6425(99)00010-9Search in Google Scholar
© 2014, Carl Hanser Verlag, München