Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 17, 2014

Hot ductility behavior of near-alpha titanium alloy IMI834

MohammadHadi Ghavam, Maryam Morakabati, Seyed Mahdi Abbasi and Hassan Badri

Abstract

The hot ductility of rolled IMI834 titanium alloy has been studied by conducting tensile tests with a strain rate of 0.1 s−1 and temperature range of 750–1 100 °C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha–beta region in the temperature range 750–950 °C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1 000 °C, i. e. in the upper alpha–beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.


* Dr. Maryam Morakabati, Namjoo square, Salman Farsi Street, Melli Alley, Khvansaryha Alley, No. 30, 1615967461, Tehran, Iran. Tel.: +982177591539, Fax: +982144562065, E-mail:

References

[1] R.Boyer, G.Welsch, E.W.Collings: Materials properties handbook: Titanium alloys, ASM International, USA (1994).Search in Google Scholar

[2] N.Singh, N.Prasad, V.Singh: Met. Mater. Trans. A30 (1999) 2547. 10.1007/s11661-999-0263-xSearch in Google Scholar

[3] C.M.Omprakash, D.V.V.Satyanarayana, V.Kumar: Mater. Sci. Technol.27 (2011) 1427. 10.1179/026708310X12712410311776Search in Google Scholar

[4] L.X.Li, K.P.Rao, Y.Lou, D.S.Peng: Int. J. Mech. Sci.44 (2002) 2415. 10.1016/S0020-7403(01)00083-2Search in Google Scholar

[5] J.Polmear: Light alloys from traditional alloys to nanocrystals, 4th Ed., Elsevier (2006).Search in Google Scholar

[6] I.Weiss, S.L.Semiatin: Mater. Sci. Eng. A263 (1999) 243. 10.1016/S0921-5093(98)01155-1Search in Google Scholar

[7] P.Wanjara, M.Jahazi, H.Monajati, S.Yue: Mater. Sci. Eng. A416 (2006) 300. 10.1016/j.msea.2005.10.042Search in Google Scholar

[8] H.Fujii, H.G.Suzuki: Scr. Metall. Mater.24 (1990) 1843. 10.1016/0956-716X(90)90037-HSearch in Google Scholar

[9] B.B.Rath, B.K.Damkroger, M.A.Imam, G.R.Edwards: Report of Agency of the United States Government (1994).Search in Google Scholar

[10] H.G.Suzuki, D.Eylon: Mater. Sci. Eng. A243 (1998) 126. 10.1016/S0921-5093(97)00789-2Search in Google Scholar

[11] H.G.Suzuki, D.Eylon: ISIJ Int.33 (1993) 1270. 10.2355/isijinternational.33.1270Search in Google Scholar

[12] S.S.Ushkov: The Science Technology and Application of Titanium, Pergamon, New York (1977).Search in Google Scholar

[13] B.K.Damkroger: Ph.D. thesis, Colorado School of Mines, Washington (1988).Search in Google Scholar

[14] B.K.Damkroger, G.R.Edwards, B.B.Rath: Metall. Trans. A18 (1987) 483. 10.1007/BF02648810Search in Google Scholar

[15] P.Wanjara, M.Jahazi, H.Monajati, S.Yue, J.-P.Immarigeon: Mater. Sci. Eng. A396 (2005) 50. 10.1016/j.msea.2004.12.005Search in Google Scholar

[16] P.Vo, M.Jahazi, S.Yue: Metall. Mater. Trans. A39 (2008) 2965. 10.1007/s11661-008-9666-3Search in Google Scholar

[17] P.Vo, M.Jahazi, S.Yue, P.Bocher: Mater. Sci. Eng. A447 (2007) 99. 10.1016/j.msea.2006.10.032Search in Google Scholar

[18] P.Vo, M.Jahazi, S.Yue: Adv. Mater. Res.15–17 (2007) 965.Search in Google Scholar

[19] P.Vo: Ph.D. Thesis, Department of Mining and Materials Engineering, McGill University, Montreal (2009).Search in Google Scholar

[20] X.Wang, M.Jahazi, S.Yue: Mater. Sci. Eng. A434 (2006) 188. 10.1016/j.msea.2006.06.077Search in Google Scholar

[21] I.Balasundar, T.Raghu, B.P.Kashyap: Mater. Sci. Forum.710 (2012) 533. 10.4028/www.scientific.net/MSF.710.270Search in Google Scholar

[22] ASTM, E 8 M (2000).Search in Google Scholar

[23] M.Vanderhasten, L.Rabet, B.Verlinden: Mater. Des.29 (2008) 1090. 10.1016/j.matdes.2007.06.005Search in Google Scholar

[24] M.Vanderhasten, L.Rabet, B.Verlinden: J. Mater. Eng. Perform.16 (2007) 208. 10.1007/s11665-007-9033-3Search in Google Scholar

[25] M.Vanderhasten: Ph.D. Thesis, Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven (2007).Search in Google Scholar

[26] S.L.Semiatin, V.Seetharaman, A.K.Ghosh, E.B.Shell, M.P.Simon. P.N.Fagin: Mater. Sci. Eng. A256 (1998) 92. 10.1016/S0921-5093(98)00814-4Search in Google Scholar

[27] W.F.Cui, Z.Jin, A.H.Guo, L.Zhou: Mater. Sci. Eng. A499 (2009) 252. 10.1016/j.msea.2007.11.109Search in Google Scholar

[28] A.Mitchell: Mater. Sci. Eng. A243 (1998) 257. 10.1016/S0921-5093(97)00810-1Search in Google Scholar

[29] G.Lutjering, J.C.Williams: Titanium Engineering Materials and Processes, Springer, Manchester, UK (2003). 10.1007/978-3-540-71398-2Search in Google Scholar

[30] S.L.Semiatin, V.Seetharaman, I.Weiss: Mater. Sci. Eng. A243 (1998) 1. 10.1016/S0921-5093(97)00776-4Search in Google Scholar

[31] S.L.Semiatin, G.D.Lahoti: Metall. Trans. A12 (1981) 1705. 10.1007/BF02643753Search in Google Scholar

[32] P.Dadras, J.F.Thomas: Metall. Trans. A12 (1981) 1867. 10.1007/BF02643797Search in Google Scholar

[33] W.Jia, W.Zeng, J.Liu, Y.Zhou, Q.Wang: Mater. Sci. Eng. A530 (2011) 135. 10.1016/j.msea.2011.09.064Search in Google Scholar

[34] Y.Han, W.Zeng, Y.Qi, Y.Zhao: Mater. Sci. Eng. A528 (2011) 8410. 10.1016/j.msea.2011.01.068Search in Google Scholar

[35] Y.Han, W.Zeng, Y.Qi, Y.Zhao: Mater. Sci. Eng. A529 (2011) 393. 10.1016/j.msea.2011.09.048Search in Google Scholar

[36] F.Ma, W.Lu, J.Qin, D.Zhang: Mater. Sci. Eng. A416 (2006) 59. 10.1016/j.msea.2005.09.082Search in Google Scholar

[37] H.M.Flower: Mater. Sci. Technol.6 (1990) 1082. 10.1179/026708390790189984Search in Google Scholar

Received: 2014-01-29
Accepted: 2014-05-14
Published Online: 2014-11-17
Published in Print: 2014-11-10

© 2014, Carl Hanser Verlag, München