Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 17, 2014

Microstructure and mechanical properties of Ti2AlC-reinforced TiAl composites

Taotao Ai , Fang Liu , Qi Yu , Xiaoming Feng , Yingtang Zhang and Wenhu Li

Abstract

Ti2AlC/TiAl composites were successfully in-situ synthesized by reaction hot pressing using Ti, Al, TiC and CNTs as starting materials. The results indicate that the as-sintered composites mainly consist of Ti2AlC and TiAl phases. The mechanical properties of the 23 wt.% Ti2AlC/TiAl composite exhibit the highest values, with a flexural strength and fracture toughness of 652.5 ± 76.8 MPa and 6.6 ± 0.5 MPa m1/2, respectively. The complex structure coupled with dispersed Ti2AlC micro-particulates is responsible for the enhancement in the strength. Toughening of the composite is mainly attributed to crack deflection, crack bridging, crack branching and pull-out of the Ti2AlC particles, as well as transgranular cracking.


* Taotao Ai, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, P.R. China. Tel.: +86 916 2291082, Fax: +86 916 2291082, E-mail:

References

[1] J.Cheng, Y.Yu, L.C.Fu, F.Li, Z.H.Qiao, J.S.Li, J.Yang, W.M.Liu: Tribol. Int.62 (2013) 91. 10.1016/j.triboint.2013.02.006Search in Google Scholar

[2] E.A.Loria: Intermetallics8 (2000) 1339. 10.1016/S0966-9795(00)00073-XSearch in Google Scholar

[3] S.L.Shu, B.Xing, F.Qiu, S.B.Jin, Q.C.Jiang: Mater. Sci. Eng. A560 (2013) 596. 10.1016/j.msea.2012.10.001Search in Google Scholar

[4] S.L.Shu, F.Qiu, B.Xing, S.B.Jin, Y.W.Wang, Q.C.Jiang: Intermetallics28 (2012) 65. 10.1016/j.intermet.2012.03.053Search in Google Scholar

[5] K.Kothari, R.Radhakrishnan, N.M.Wereley: Prog. Aerosp. Sci.55 (2012) 1. 10.1016/j.paerosci.2012.04.001Search in Google Scholar

[6] M.H.Loretto, A.B.Godfrey, D.Hu, P.A.Blenkinsop, I.P.Jones, T.T.Cheng: Intermetallics6 (1998) 663. 10.1016/S0966-9795(98)00035-1Search in Google Scholar

[7] A.Bartels, H.Kestler, H.Clemens: Mater. Sci. Eng. A329–331 (2002) 153. 10.1016/S0921-5093(01)01552-0Search in Google Scholar

[8] M.W.Barsoum: Prog. Solid State Chem.28 (2000) 201. 10.1016/S0079-6786(00)00006-6Search in Google Scholar

[9] M.Radovic, M.W.Barsoum, A.Ganguly, T.Zhen, P.Finkel, S.R.Kalidindi, E.Lara-Curzio: Acta Mater.54 (2006) 2757. 10.1016/j.actamat.2006.02.019Search in Google Scholar

[10] X.H.Wang, Y.C.Zhou: Oxid. Met.59 (2003) 303. 10.1023/A:1023092027697Search in Google Scholar

[11] B.Mei, Y.Miyamoto: Mater. Chem. Phys.75 (2002) 291. 10.1016/S0254-0584(02)00078-0Search in Google Scholar

[12] C.H.Yang, F.Wang, T.T.Ai, J.F.Zhu: Ceram. Int.40 (2014) 8165. 10.1016/j.ceramint.2013.05.119Search in Google Scholar

[13] F.Yang, F.T.Kong, Y.Y.Chen, S.L.Xiao: J. Alloys Comp.496 (2010) 462. 10.1016/j.jallcom.2010.02.015Search in Google Scholar

[14] J.Wang, N.Q.Zhao, P.Nash, E.Z.Liu, C.N.He, C.S.Shi, J.J.Li: J. Alloys Compd.578 (2013) 481. 10.1016/j.jallcom.2013.04.153Search in Google Scholar

[15] Z.S.Xu, X.L.Shi, W.Z.Zhai, J.Yao, S.Y.Song, Q.X.Zhang: Carbon67 (2014) 168. 10.1016/j.carbon.2013.09.077Search in Google Scholar

[16] Y.L.Bai, X.D.He, C.C.Zhu, G.Q.Chen: J. Am. Ceram. Soc.95 (2012) 358. 10.1111/j.1551-2916.2011.04934.xSearch in Google Scholar

[17] K.T.Faber, A.G.Evans: Acta Metall.31 (1983) 565. 10.1016/0001-6160(83)90046-9Search in Google Scholar

Received: 2014-04-14
Accepted: 2014-05-20
Published Online: 2014-11-17
Published in Print: 2014-11-10

© 2014, Carl Hanser Verlag, München

Downloaded on 30.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.3139/146.111119/html
Scroll Up Arrow