Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter November 17, 2014

Effects of rotating magnetic and ultrasonic fields on the microstructure and mechanical properties of Al-8 wt.%Si alloy

Yubo Zhang, Hang Chen, Jinchuan Jie and Tingju Li

Abstract

The application of physical fields is currently a common method to improve the solidification structure of Al alloys. In this study, rotating magnetic field (RMF) and power ultrasonic field (USF) were applied during the solidification process of Al-8 wt.%Si alloy. The experimental results have been compared to those of conventional casting and have verified that the alloys processed under individual RMF or USF exhibit obvious refinement in their solidification structure as well as an enhancement in the mechanical properties. However, the refinement under RMF is not fully effective, while the ultrasonically treated region is inadequate. For the case of the compound fields, it could be furthermore observed that these improvements become more pronounced. Owing to the advantages of both RMF and USF, RMF enlarges the ultrasonic treated region, and USF improves the refinement effect of RMF as well.


* Professor Tingju Li, PhD, School of Material Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China. Tel.: +86 0411 84708940, Fax: +86 0411 84708940, E-mail: .

References

[1] P.A.Nikrityuk, K.Eckert, R.Grundmann: Acta Mech.186 (2006) 1. 10.1007/s00707-006-0354-3Search in Google Scholar

[2] S.Eckert, P.Nikrityuk, B.Willers, D.Räbiger, N.Shevchenko, H.Neumann-Heyme, V.Travnikov, S.Odenbach, A.Voigt, K.Eckert: Eur. Phys. J. Spec. Top.220 (2013) 123. 10.1140/epjst/e2013-01802-7Search in Google Scholar

[3] J.Zhu, T.M.Wang, F.Cao, W.X.Huang, H.W.Fu, Z.N.Chen: Mater. Lett.89 (2012) 137. 10.1016/j.matlet.2012.08.094Search in Google Scholar

[4] O.V.Abramov: Ultrasonics25 (1987) 73. 10.1016/0041-624X(87)90063-1Search in Google Scholar

[5] G.I.Eskin: Ultrasonic treatment of light alloy melts, CRC Press (1997).Search in Google Scholar

[6] T.V.Atamanenko, D.G.Eskin, L.Zhang, L.Katgerman: Metall. Mater. Trans. A41 (2010) 2056. 10.1007/s11661-010-0232-4Search in Google Scholar

[7] D.Shu, B.D.Sun, J.W.Mi, P.S.Grant: Metall. Mater. Trans. A43 (2012) 3755. 10.1007/s11661-012-1188-3Search in Google Scholar

[8] H.Puga, J.C.Teixeira, J.Barbosa, E.Seabra, S.Ribeiro, M.Prokic: Mater. Lett.63 (2009) 2089. 10.1016/j.matlet.2009.01.009Search in Google Scholar

[9] I.Grants, G.Gerbeth: J. Fluid Mech.431 (2001) 407. 10.1017/S0022112000003141Search in Google Scholar

[10] W.D.Griffiths, D.G.McCartney: Mater. Sci. Eng. A216 (1996) 47. 10.1016/0921-5093(96)10392-0Search in Google Scholar

[11] Z.T.Zhang, J.Li, H.Y.Yue, J.Zhang, T.J.Li: J. Alloys Compd.484 (2009) 458. 10.1016/j.jallcom.2009.04.015Search in Google Scholar

[12] X.Jian, T.T.Meek, Q.Han: Scr. Mater.54 (2006) 893. 10.1016/j.scriptamat.2005.11.004Search in Google Scholar

[13] J.Campbell: Int. Mater. Rev.26 (1981) 71. 10.1179/095066081790149249Search in Google Scholar

[14] Y.Zhang, J.Jie, Y.Gao, Y.Lu, T.Li: Intermetallics42 (2013) 120. 10.1016/j.intermet.2013.05.003Search in Google Scholar

[15] G.I.Eskin: Ultrason. Sonochem. 1 (1994) S59. 10.1016/1350-4177(94)90029-9Search in Google Scholar

[16] R.Wagterveld, L.Boels, M.Mayer, G.Witkamp: Ultrason. Sonochem.18 (2011) 216. 10.1016/j.ultsonch.2010.05.006Search in Google Scholar

[17] A.Kumar, T.Kumaresan, A.B.Pandit, J.B.Joshi: Chem. Eng. Sci.61 (2006) 7410. 10.1016/j.ces.2005.12.014Search in Google Scholar

Received: 2013-12-26
Accepted: 2014-05-23
Published Online: 2014-11-17
Published in Print: 2014-11-10

© 2014, Carl Hanser Verlag, München