Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 17, 2014

Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing

Mansour Razavi and Iman Mobasherpour

Abstract

Mixtures of 5, 10, 20 and 30 wt.% of tungsten carbide powder and 7075 aluminum alloy powder were ball milled for 20 hrs to investigate the effect of percentages of the reinforcement on microstructural and mechanical properties of the produced composite. The milled powders were sintered in a hot press and analyzed using X-ray diffraction. The microstructure, physical and mechanical properties of the specimens were studied. Results showed that the milling process synthesized Al–WC composite powders in which crystallite sizes of the produced phases were in the nano-scale regime. Although the higher amounts of tungsten carbide increased bulk density of the sintered samples, the apparent density decreased. The increase in the amount of the tungsten carbide phase increased effectively the hardness of the sintered specimens, however, the ultimate tensile strengths showed an maximum value at 20 wt.% of the reinforcement phase.


* Mansour Razavi, Department of Ceramic, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran. Tel.: +98 26 36204131, Fax: +98 26 36201888, E-mail:

References

[1] J.R.Davis: Corrosion of aluminum and aluminum alloys, ASM International (1999).10.31399/asm.tb.caaa.9781627082990Search in Google Scholar

[2] H.Sevik, S.Kurnaz: Mater. Des.27 (2006) 676. 10.1016/j.matdes.2005.01.006Search in Google Scholar

[3] M.Hoseini, M.Meratian: Mater. Lett.59 (2005) 3414. 10.1016/j.matlet.2005.06.006Search in Google Scholar

[4] S.Chu, R.Wu: Compos. Sci. Technol.59 (1999) 157. 10.1016/S0266-3538(97)00187-5Search in Google Scholar

[5] J.S.Benjamin: Met. Trans.1 (1970) 2943.10.1007/BF03037835Search in Google Scholar

[6] C.Suryanarayana: Prog. Mater. Sci.46 (2001) 1. 10.1016/S0079-6425(99)00010-9Search in Google Scholar

[7] M.S.El-Eskandarany: Mechanical Alloying: For Fabrication of Advanced Engineering Materials, Access Online via Elsevier (2001).Search in Google Scholar

[8] N.Zhao, P.Nash, X.Yang: J. Mater. Process. Technol.170 (2005) 586. 10.1016/j.jmatprotec.2005.06.037Search in Google Scholar

[9] I.Estrada-Guel, J.Cardoso, C.Careño-Gallardo, J.Herrera-Ramírez, R.Martínez-Sánchez, in: MRS Proceedings, Synthesis and Mechanical Characterization of Aluminum Based Composites Prepared by Powder Metallurgy, Cambridge Univ. Press (2009). 10.1557/PROC-1243-21Search in Google Scholar

[10] K.Youssef, R.Scattergood, K.Murty, C.Koch: Scr. Mater.54 (2006) 251. 10.1016/j.scriptamat.2005.09.028Search in Google Scholar

[11] I.Ibrahim, F.Mohamed, E.Lavernia: J. Mater. Sci.26 (1991) 1137. 10.1007/BF00544448Search in Google Scholar

[12] S.Arakawa, T.Hatayama, K.Matsugi, O.Yanagisawa: Scripta Mater.42 (2000) 755. 10.1016/S1359-6462(99)00426-1Search in Google Scholar

[13] M.Lee: Metall. Mater. Trans.14 (1983) 1625. 10.1007/BF02654390Search in Google Scholar

[14] Y.Shinoda, T.Akatsu, F.Wakai: Mater. Sci. Eng. B-Adv148 (2008) 145. 10.1016/j.mseb.2007.09.053Search in Google Scholar

[15] J.R.Davis, P.Allen, S.R.Lampman, T.B.Zorc: Metals Handbook. Vol. 2: Properties and Selection: Nonferrous Alloys and Special-purpose Materials, ASM Int. OH, USA (1990).Search in Google Scholar

[16] G.R.Goren-Muginstein, S.Berger, A.Rosen: Nanostruct. Mater.10 (1998) 795. 10.1016/S0965-9773(98)00116-0Search in Google Scholar

[17] P.H.Gao, C.-J.Li, G.-J.Yang, Y.-G.Li, C.-X.Li: Appl. Surf. Sci.256 (2010) 2263. 10.1016/j.apsusc.2009.10.050Search in Google Scholar

[18] A.Mukhopadhyay, B.Basu: J. Mater. Sci.46 (2011) 571. 10.1007/s10853-010-5046-7Search in Google Scholar

[19] A.Evirgen, M.L.Öveçoğlu: J. Alloys Compd.496 (2010) 212. 10.1016/j.jallcom.2010.02.136Search in Google Scholar

[20] M.Razavi, M.R.Rahimipour, R.Mansoori: J. Alloys Compd.450 (2008) 463. 10.1016/j.jallcom.2006.11.013Search in Google Scholar

[21] M.Razavi, M.R.Rahimipour, R.Kaboli: J. Alloys Compd.460 (2008) 694. 10.1016/j.jallcom.2007.06.080Search in Google Scholar

[22] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar

[23] ASTM, C373–88: Standard test method for water absorption, bulk density, apparent density and the apparent specific gravity of fired whiteware products (1999).Search in Google Scholar

[24] ASTM, E 10–10: Standard Test Method for Brinell Hardness of Metallic Materials (2010).Search in Google Scholar

[25] ASTM, E 8: Standard Test Methods for Tension Testing of Metallic Materials (2010).Search in Google Scholar

[26] D.R.Gaskell: Introduction to the thermodynamics of materials, 5th Ed., Taylor & Francis, New York (2008).Search in Google Scholar

[27] M.Razavi, M.R.Rahimipour, R.Yazdani-Rad: J. Alloys Compd.509 (2011) 6683. 10.1016/j.jallcom.2011.03.137Search in Google Scholar

[28] M.Razavi, M.R.Rahimipour, R.Yazdani-Rad: J. Nanomater.2011 (2011) 1. 10.1155/2011/105138Search in Google Scholar

[29] B.Reddy, K.Das, S.Pabi, S.Das: Mater. Sci. Eng. A445 (2007) 341. 10.1016/j.msea.2006.09.045Search in Google Scholar

[30] M.Razavi, M.Rahimipour, R.Yazdani-Rad: Adv. Appl. Ceram.110 (2011) 367. 10.1179/1743676111Y.0000000021Search in Google Scholar

[31] M.Razavi, M.Rahimipour, A.Rajabi: Mater. Technol.28 (2013) 145. 10.1179/1753555712Y.0000000045Search in Google Scholar

[32] A.Evans, C. SanMarchi, A.Mortensen: Metal matrix composites in industry: an introduction and a survey, Springer (2003). 10.1007/978-1-4615-0405-4Search in Google Scholar

[33] T.Pardoen, J.Hutchinson: J. Mech. Phys. Solids48 (2000) 2467. 10.1016/S0022-5096(00)00019-3Search in Google Scholar

[34] T.Pardoen, I.Doghri, F.Delannay: Acta Mater.46 (1998) 541. 10.1016/S1359-6454(97)00247-4Search in Google Scholar

Received: 2014-03-23
Accepted: 2014-05-27
Published Online: 2014-11-17
Published in Print: 2014-11-10

© 2014, Carl Hanser Verlag, München