Abstract
In order to investigate the influence of crystal-lattice defects (dislocations) and of a relatively large Al content on the development of different modifications of aluminium nitride in ferrite and on the associated uptake of excess nitrogen, recrystallised and cold rolled specimens of Fe-4.75 at.% Al alloy were subjected to gaseous nitriding treatments at 550 °C employing a nitriding potential of 0.104 atm−1/2. In contrast with earlier results for an alloy of relatively low Al content, in both the nitrided cold rolled and the nitrided recrystallised specimens nanosized AlN precipitates developed, both of the metastable, cubic, NaCl type modification and of the stable, hexagonal, wurtzite type modification, which exhibit with the ferrite matrix a Baker–Nutting orientation relationship and a Pitsch–Schrader orientation relationship, respectively. A high-temperature hydrogen reduction treatment confirmed the stoichiometry of the precipitated nitrides as AlN. The fraction of cubic, NaCl type, AlN is significantly higher in the nitrided cold-rolled specimens because of its preferential development along dislocations. As compared to the nitrided recrystallised specimens, the higher dislocation density and the higher amount of cubic AlN in the nitrided cold-rolled specimens leads to a larger amount of excess nitrogen in the nitrided cold-rolled specimen.
References
[1] P.M.Unterweiser, in: A.G.Gray (Ed.), Source Book on Nitriding, ASM, Metals Park, OH (1977).Search in Google Scholar
[2] C.H.Knerr, T.C.Rose, J.H.Filkowski, in: J.R.Davis, G.M.Davidson, S.R.Lampman, T.B.Zorc, J.L.Daquila, A.W.Ronke, K.L.Henninger, R.C.Uhl (Eds.), ASM Handbook: Heat Treating, ASM Int., Metals Park, OH (1991) 387.Search in Google Scholar
[3] F.Hoffmann, H.Klümper-Westkamp (Eds.): European Conference on Heat Treatment 2010 – Nitriding and Nitrocarburising, AWT-Bremen, Aachen (2010).Search in Google Scholar
[4] E.J.Mittemeijer, in: J.Dossett, G.E.Totten (Eds.), ASM Handbook, Volume 4A: Steel Heat Treating Fundamentals and Processes, ASM Int. (2013) 619.10.31399/asm.hb.v04a.a0005818Search in Google Scholar
[5] H.H.Podgursk, R.A.Oriani, F.N.Davis, J.C.M.Li, Y.T.Chou: Trans. Metall. Soc. AIME245 (1969) 1603.Search in Google Scholar
[6] H.H.Podgursk, H.E.Knechtel: Trans. Metall. Soc. AIME245 (1969) 1595.Search in Google Scholar
[7] M.H.Biglari, C.M.Brakman, M.A.J.Somers, W.G.Sloof, E.J.Mittemeijer: Z. Metallkd.84 (1993) 124.Search in Google Scholar
[8] M.H.Biglari, C.M.Brakman, E.J.Mittemeijer, S.van der Zwaag: Phil. Mag. A72 (1995) 931. 10.1080/01418619508236255Search in Google Scholar
[9] M.H.Biglari, C.M.Brakman, E.J.Mittemeijer, S.van der Zwaag: Metall. Mater. Trans. A26 (1995) 765. 10.1007/BF02649075Search in Google Scholar
[10] M.H.Biglari, C.M.Brakman, E.J.Mittemeijer: Phil. Mag. A72 (1995) 1281. 10.1080/01418619508236255Search in Google Scholar
[11] J.T.Norton: Trans. Am. Inst. Min. Met. Eng.113 (1934) 262.Search in Google Scholar
[12] S.R.Meka, S.S.Hosmani, A.R.Clauss, E.J.Mittemeijer: Int. J. Mater. Res99 (2008) 808. 10.3139/146.101703Search in Google Scholar
[13] S.R.Meka, E.Bischoff, R.E.Schacherl, E.J.Mittemeijer: Phil. Mag.92 (2012) 1083. 10.1080/14786435.2011.640295Search in Google Scholar
[14] E.Furubaya, H.Yoshida: Mater. Sci. Eng.14 (1974) 123. 10.1016/0025-5416(74)90005-6Search in Google Scholar
[15] A.Brahmi, R.Borrelly: Acta Mater.45 (1997) 1889. 10.1016/S1359-6454(96)00333-3Search in Google Scholar
[16] E.Kozeschnik, V.Pletenev, N.Zolotorevsky, B.Buchmayr: Metall. Mater. Trans. A30 (1999) 1663. 10.1007/s11661-999-0104-ySearch in Google Scholar
[17] M.Sennour, C.Esnouf: Acta Mater.51 (2003) 943. 10.1016/S1359-6454(02)00498-6Search in Google Scholar
[18] E.J.Mittemeijer, J.T.Slycke: Surf. Eng.12 (1996) 152. 10.1179/sur.1996.12.2.152Search in Google Scholar
[19] E.Lehrer: Z. Elektrochem.36 (1930) 383.10.1215/00166928-36-3-4-383Search in Google Scholar
[20] J.Stein, R.E.Schacherl, M.S.Jung, S.Meka, B.Rheingans, E.J.Mittemeijer: Int. J. Mater. Res.104 (2013) 1053. 10.3139/146.110968Search in Google Scholar
[21] JCPDS, International Center of Diffraction Data, PCPDFWIN Ver.202, (1999).Search in Google Scholar
[22] N.E.V.Diaz, S.S.Hosmani, R.E.Schacherl, E.J.Mittemeijer: Acta Mater.56 (2008) 4137. 10.1016/j.actamat.2007.11.012Search in Google Scholar
[23] S.S.Hosmani, R.E.Schacherl, L.Litynska-Dobrzynska, E.J.Mittemeijer: Phil. Mag. A88 (2008) 2411. 10.1080/14786430802345660Search in Google Scholar
[24] E.J.Mittemeijer: Fundamentals of Materials Science, Springer-Verlag, Berlin, Heidelberg (2010). 10.1007/978-3-642-10500-5_1Search in Google Scholar
[25] R.Delhez, T.H. deKeijser, E.J.Mittemeijer: Surf. Eng.3 (1987) 331. 10.1179/sur.1987.3.4.331Search in Google Scholar
[26] E.J.Mittemeijer, U.Welzel, in: E.J.Mittemeijer, U.Welzel (Eds.), Modern Diffraction Methods, Wiley-VCH, Weinheim (2013) 89.10.1002/9783527649884Search in Google Scholar
[27] A.Leineweber, E.J.Mittemeijer: J. Appl. Crystallogr.43 (2010) 981. 10.1107/S0021889810030451Search in Google Scholar
[28] M.A.J.Somers, R.M.Lankreijer, E.J.Mittemeijer: Phil. Mag. A59 (1989) 353. 10.1080/01418618908205064Search in Google Scholar
[29] R.E.Schacherl, P.C.J.Graat, E.J.Mittemeijer: Metall. Mater. Trans. A35 (2004) 3387. 10.1007/s11661-004-0175-8Search in Google Scholar
[30] H.H.Podgurski, F.N.Davis: Acta Metall.29 (1981) 1. 10.1016/0001-6160(81)90081-XSearch in Google Scholar
[31] A.R.Clauss, E.Bischoff, S.S.Hosmani, R.E.Schacherl, E.J.Mittemeijer: Metall. Mater. Trans. A40 (2009) 1923. 10.1007/s11661-009-9865-6Search in Google Scholar
[32] S.S.Hosmani, R.E.Schacherl, E.J.Mittemeijer: Acta Mater.54 (2006) 2783. 10.1016/j.actamat.2006.02.017Search in Google Scholar
[33] L.P.H.Jeurgens, Z.M.Wang, E.J.Mittemeijer: Int. J. Mater. Res.100 (2009) 1281. 10.3139/146.110204Search in Google Scholar
[34] A.R.Clauss, E.Bischoff, R.E.Schacherl, E.J.Mittemeijer: Phil. Mag.89 (2009) 565. 10.1080/09500830903170567Search in Google Scholar
© 2014, Carl Hanser Verlag, München