Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 17, 2014

Plasmon enhanced scattering and fluorescence in amorphous matrix

  • Raja J. Amjad , Md. Rahim Sahar , S. F. Shaukat , Hassan Mahmood , Abdul Sattar , M. R. Dousti and Fakhra Nawaz


A melt-quench method is used to synthesize a series of tellurite glasses containing fixed concentration of Er2O3, with and without silver nanoparticles. The existence of metallic nanoparticles (average diameter ∼2436 nm) inside the glass is confirmed by transmission electron microscope imaging. From UVVis absorption spectroscopy, a surface plasmon resonance band is detected in the visible region (∼484 nm). Furthermore, the intensity of both fluorescence and Raman scattering is found to be enhanced by embedding silver nanoparticles inside the glass matrix. These enhancements are attributed to the surface plasmon resonance effect in which direct plasmon excitation enhances the local field at the surface of the nanostructures. Enhanced fluorescence influenced by silver nanoparticles may contribute towards the development of optical displays, laser and optical memory devices whereas amplification of the Raman signal is promising for Raman amplifiers.

* Dr. M. Junaid Amjad, Department of Physics, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore, Pakistan. Tel.: +92-042-111-001-007-110, Fax: +92-42-9203100, E-mail:

Paper presented at International Conference on Solid State Physics 2013 (ICSSP13), 02 – 06 December 2013, University of the Punjab, Lahore, Pakistan


[1] M.Fujii, M.Yoshida, Y.Kanzawa, S.Hayashi, K.Yamamoto: Appl. Phys. Lett.71 (1997) 1198. 10.1063/1.119624Search in Google Scholar

[2] G.Fuxi, L.Xu: Photonic Glasses, World Scientific Press, Singapore (2006).Search in Google Scholar

[3] K.Aslan, I.Gryczynski, J.Malicka, E.Matveeva, J. R.Lakowicz, C. D.Geddes: Current Opinion Biotechnol.16 (2005) 55. 10.1016/j.copbio.2005.01.001Search in Google Scholar PubMed PubMed Central

[4] W.L.Barnes, A.Dereux, T.W.Ebbesen: Nature424 (2003) 824. 10.1038/nature01937Search in Google Scholar PubMed

[5] T.Hayakawa, S.T.Selvan, M.Nogami: Appl. Phys. Lett.74 (1999) 1513. 10.1063/1.123600Search in Google Scholar

[6] H.Mertens, A.Polman: Appl. Phys. Lett.89 (2006) 212207. 10.1063/1.2392827Search in Google Scholar

[7] M.Mattarelli, M.Montagna, K.Vishnubhatla, A.Chiasera, M.Ferrari, G.C.Righini: Phys. Rev. B75 (2007) 125102. 10.1103/PhysRevB.75.125102Search in Google Scholar

[8] Raja J.Amjad, M.R.Sahar, S.K.Ghoshal, M.R.Dousti, S.Riaz, B.A.Tahir: J. Lumin.132 (2012) 2714. 10.1016/j.jlumin.2012.05.008Search in Google Scholar

[9] L.R.P.Kassab, Araújo Cid, R.A.Kobayashi, Almeida Pinto, D.M.da Silva: J. Appl. Phys.102 (2007) 103515. 10.1063/1.2817980Search in Google Scholar

[10] J.Ueda, S.Tanabe, A.Ishida: J. Non-Cryst. Solids.355 (2009) 1912. 10.1016/j.jnoncrysol.2008.07.045Search in Google Scholar

[11] E.Nardou, D.Vouagner, A.M.Jurdyc, A.Berthelot, A.Pillonnet, V.Sablonière, F.Bessueille, B.Champagnon: J. Non-Cryst. Solids.357 (2011) 1895. 10.1016/j.jnoncrysol.2010.11.109Search in Google Scholar

[12] O.L.Malta, M.A.dos Santos: Chem. Phys. Lett.174 (1990) 1318. 10.1016/0009-2614(90)85319-8Search in Google Scholar

[13] M.Fleischmann, P.J.Hendra, A.J.McQuillan: Chem. Phys. Lett.26 (1974) 163. 10.1016/0009-2614(74)85388-1Search in Google Scholar

[14] D.L.Jeanmaire, R.P.Van Duyne: Electroanal. Chem.84 (1977) 1. 10.1016/S0022-0728(77)80224-6Search in Google Scholar

[15] K.Kneipp: Phys. Today40–46 (2007). 10.1016/S0022-0728(77)80224-6Search in Google Scholar

Received: 2014-01-25
Accepted: 2014-05-27
Published Online: 2014-11-17
Published in Print: 2014-11-10

© 2014, Carl Hanser Verlag, München

Downloaded on 4.12.2023 from
Scroll to top button