Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 5, 2014

On the orientation dependence of grain boundary triple line energy in Cu

Bingbing Zhao, Lasar Shvindlerman and Günter Gottstein


Triple lines are the lines of intersection of three interfaces, either external interfaces or internal interfaces of a bulk material. They have been recognized as important microstructural features with specific kinetic and thermodynamic properties. Utilizing atomic force microscopy, the line tensions, i.e. the energy of grain boundary-free surface triple lines and grain boundary triple junctions for different crystallographic systems in copper were determined. The line tension of grain boundary triple junctions in copper was found to be positive and of the order of 10−9 J m−1. Junctions including low energy boundaries, twin boundaries and low angle boundaries revealed a substantially lower line tension than triple junctions comprised only of random high angle boundaries. A simple model based on a constant grain boundary energy density is proposed to account for the orientation dependence of triple line energy.

* Correspondence address, Dr.-Ing. Bingbing Zhao, Institut für Metallkunde und Metallphysik, RWTH Aachen University, Kopernikusstr. 14, 52074 Aachen, Germany, Tel: +49-241-80 2 68 93, Fax: +49-241-80 22 30 1, E-mail:


[1] U.Czubayko, V.G.Sursaeva, G.Gottstein, L.S.Shvindlerman: Acta Mater.46 (1998) 5863. 10.1016/S1359-6454(98)00241-9Search in Google Scholar

[2] M.Upmanyu, D.J.Srolovitz, L.S.Shvindlerman, G.Gottstein: Interface Sci.7 (1999) 307. 10.1023/A:1008781611991Search in Google Scholar

[3] M.Upmanyu, D.J.Srolovitz, L.S.Shvindlerman, G.Gottstein: Acta Mater.50 (2002) 1405. 10.1016/S1359-6454(01)00446-3Search in Google Scholar

[4] F.Lefevre-Schlick, Y.Brechet, H.S.Zurob, G.Purdy, D.Embury: Mater. Sci. Eng.A502 (2009) 70. 10.1016/j.msea.2008.10.015Search in Google Scholar

[5] A.H.King: Scr. Mater.62 (2010) 889. 10.1016/j.scriptamat.2010.02.020Search in Google Scholar

[6] K.Owusu-Boahen, A.H.King: Acta Mater.49 (2001) 237. 10.1016/S1359-6454(00)00315-3Search in Google Scholar

[7] M.R.Chellali, Z.Balogh, L.Zheng, G.Schmitz: Scr. Mater.65 (2011) 343. 10.1016/j.scriptamat.2011.05.002Search in Google Scholar

[8] P.Stender, Z.Balogh, G.Schmitz: Ultramicroscopy111 (2011) 524. 10.1016/j.ultramic.2010.10.021Search in Google Scholar PubMed

[9] K.M.Yin, A.H.King, T.E.Hsieh, F.R.Chen, J.J.Kai, L.Chang: Microsc. Microanal.3 (1997) 417. 10.1017/S1431927697970318Search in Google Scholar

[10] P.Stender, Z.Balogh, G.Schmitz: Phys. Rev. B: Condens. Matter83 (2011) 121407. 10.1103/PhysRevB.83.121407Search in Google Scholar

[11] G.Gottstein, A.H.King, L.S.Shvindlerman: Acta Mater.48 (2000) 397. 10.1016/S1359-6454(99)00373-0Search in Google Scholar

[12] G.Gottstein, L.Shvindlerman: Z. Metallkd.95 (2004) 219. 10.3139/146.017936Search in Google Scholar

[13] G.Gottstein, L.S.Shvindlerman, B.Zhao: Scr. Mater.62 (2010) 914. 10.1016/j.scriptamat.2010.03.017Search in Google Scholar

[14] D.G.Morris, D.R.Harries: J. Mater. Sci.12 (1977) 1587. 10.1007/BF00542809Search in Google Scholar

[15] B.Zhao, G.Gottstein, L.S.Shvindlerman: Acta Mater.59 (2011) 3510. 10.1016/j.actamat.2011.02.024Search in Google Scholar

[16] O.K.Johnson, C.A.Schuh: Acta Mater.61 (2013) 2863. 10.1016/j.actamat.2013.01.025Search in Google Scholar

[17] F.D.Fischer, J.Svoboda, K.Hackl: Acta Mater.60 (2012) 4704. 10.1016/j.actamat.2012.05.018Search in Google Scholar

[18] P.Streitenberger, D.Moellner: Acta Mater.59 (2011) 4235. 10.1016/j.actamat.2011.03.048Search in Google Scholar

[19] V.Y.Novikov: Mater. Lett.84 (2012) 136. 10.1016/j.matlet.2012.06.056Search in Google Scholar

[20] L.A.Barrales-Mora, G.Gottstein, L.S.Shvindlerman: Acta Mater.60 (2012) 546. 10.1016/j.actamat.2011.10.022Search in Google Scholar

[21] P.Fortier, G.Palumbo, G.D.Bruce, W.A.Miller, K.T.Aust: Scr. Metall. Mater.25 (1991) 177. 10.1016/0956-716X(91)90376-CSearch in Google Scholar

[22] H.Kim, Y.Xuan, P.D.Ye, R.Narayanan, A.H.King: Acta Mater.57 (2009) 3662. 10.1016/j.actamat.2008.09.031Search in Google Scholar

[23] S.G.Srinivasan, J.W.Cahn, H.Jónsson, G.Kalonji: Acta Mater.47 (1999) 2821. 10.1016/S1359-6454(99)00120-2Search in Google Scholar

[24] A.Caro, H.Van Swygenhoven: Phys. Rev. B: Condens. Matter63 (2001) 134101. 10.1103/PhysRevB.63.134101Search in Google Scholar

[25] M.Upadhyay, L.Capolungo, V.Taupin, C.Fressengeas: Int. J. Solids Struct.48 (2011) 3176. 10.1016/j.ijsolstr.2011.07.009Search in Google Scholar

[26] S.Shekhar, A.H.King: Acta Mater.56 (2008) 5728. 10.1016/j.actamat.2008.07.053Search in Google Scholar

[27] H.Rösner, C.Kübel, Y.Ivanisenko, L.Kurmanaeva, S.V.Divinski, M.Peterlechner, G.Wilde: Acta Mater.59 (2011) 7380. 10.1016/j.actamat.2011.08.020Search in Google Scholar

[28] B.Zhao, J.C.Verhasselt, L.S.Shvindlerman, G.Gottstein: Acta Mater.58 (2010) 5646. 10.1016/j.actamat.2010.06.017Search in Google Scholar

[29] D.A.Molodov, U.Czubayko, G.Gottstein, L.S.Shvindlerman: Scr. Metall. Mater.32 (1995) 529. 10.1016/0956-716X(95)90832-5Search in Google Scholar

[30] Z.Peng: Analysis of AFM images for triple line energy measurements, RWTH Aachen University, (2012).Search in Google Scholar

[31] B.Zhao, A.Ziemons, L.S.Shvindlerman, G.Gottstein: Acta Mater.60 (2012) 811. 10.1016/j.actamat.2011.10.034Search in Google Scholar

[32] P.Keblinski, S.R.Phillpot, D.Wolf, H.Gleiter: Acta Mater.45 (1997) 987. 10.1016/S1359-6454(96)00236-4Search in Google Scholar

[33] B.K.Yoon, S.Y.Choi, T.Yamamoto, Y.Ikuhara, S.J.L.Kang: Acta Mater.57 (2009) 2128. 10.1016/j.actamat.2009.01.005Search in Google Scholar

Received: 2014-05-23
Accepted: 2014-07-25
Published Online: 2014-12-05
Published in Print: 2014-12-08

© 2014, Carl Hanser Verlag, München

Scroll Up Arrow