Accessible Requires Authentication Published by De Gruyter December 5, 2014

On the orientation dependence of grain boundary triple line energy in Cu

Bingbing Zhao, Lasar Shvindlerman and Günter Gottstein

Abstract

Triple lines are the lines of intersection of three interfaces, either external interfaces or internal interfaces of a bulk material. They have been recognized as important microstructural features with specific kinetic and thermodynamic properties. Utilizing atomic force microscopy, the line tensions, i.e. the energy of grain boundary-free surface triple lines and grain boundary triple junctions for different crystallographic systems in copper were determined. The line tension of grain boundary triple junctions in copper was found to be positive and of the order of 10−9 J m−1. Junctions including low energy boundaries, twin boundaries and low angle boundaries revealed a substantially lower line tension than triple junctions comprised only of random high angle boundaries. A simple model based on a constant grain boundary energy density is proposed to account for the orientation dependence of triple line energy.


* Correspondence address, Dr.-Ing. Bingbing Zhao, Institut für Metallkunde und Metallphysik, RWTH Aachen University, Kopernikusstr. 14, 52074 Aachen, Germany, Tel: +49-241-80 2 68 93, Fax: +49-241-80 22 30 1, E-mail:

References

[1] U.Czubayko, V.G.Sursaeva, G.Gottstein, L.S.Shvindlerman: Acta Mater.46 (1998) 5863. 10.1016/S1359-6454(98)00241-9 Search in Google Scholar

[2] M.Upmanyu, D.J.Srolovitz, L.S.Shvindlerman, G.Gottstein: Interface Sci.7 (1999) 307. 10.1023/A:1008781611991 Search in Google Scholar

[3] M.Upmanyu, D.J.Srolovitz, L.S.Shvindlerman, G.Gottstein: Acta Mater.50 (2002) 1405. 10.1016/S1359-6454(01)00446-3 Search in Google Scholar

[4] F.Lefevre-Schlick, Y.Brechet, H.S.Zurob, G.Purdy, D.Embury: Mater. Sci. Eng.A502 (2009) 70. 10.1016/j.msea.2008.10.015 Search in Google Scholar

[5] A.H.King: Scr. Mater.62 (2010) 889. 10.1016/j.scriptamat.2010.02.020 Search in Google Scholar

[6] K.Owusu-Boahen, A.H.King: Acta Mater.49 (2001) 237. 10.1016/S1359-6454(00)00315-3 Search in Google Scholar

[7] M.R.Chellali, Z.Balogh, L.Zheng, G.Schmitz: Scr. Mater.65 (2011) 343. 10.1016/j.scriptamat.2011.05.002 Search in Google Scholar

[8] P.Stender, Z.Balogh, G.Schmitz: Ultramicroscopy111 (2011) 524. 10.1016/j.ultramic.2010.10.021 Search in Google Scholar

[9] K.M.Yin, A.H.King, T.E.Hsieh, F.R.Chen, J.J.Kai, L.Chang: Microsc. Microanal.3 (1997) 417. 10.1017/S1431927697970318 Search in Google Scholar

[10] P.Stender, Z.Balogh, G.Schmitz: Phys. Rev. B: Condens. Matter83 (2011) 121407. 10.1103/PhysRevB.83.121407 Search in Google Scholar

[11] G.Gottstein, A.H.King, L.S.Shvindlerman: Acta Mater.48 (2000) 397. 10.1016/S1359-6454(99)00373-0 Search in Google Scholar

[12] G.Gottstein, L.Shvindlerman: Z. Metallkd.95 (2004) 219. 10.3139/146.017936 Search in Google Scholar

[13] G.Gottstein, L.S.Shvindlerman, B.Zhao: Scr. Mater.62 (2010) 914. 10.1016/j.scriptamat.2010.03.017 Search in Google Scholar

[14] D.G.Morris, D.R.Harries: J. Mater. Sci.12 (1977) 1587. 10.1007/BF00542809 Search in Google Scholar

[15] B.Zhao, G.Gottstein, L.S.Shvindlerman: Acta Mater.59 (2011) 3510. 10.1016/j.actamat.2011.02.024 Search in Google Scholar

[16] O.K.Johnson, C.A.Schuh: Acta Mater.61 (2013) 2863. 10.1016/j.actamat.2013.01.025 Search in Google Scholar

[17] F.D.Fischer, J.Svoboda, K.Hackl: Acta Mater.60 (2012) 4704. 10.1016/j.actamat.2012.05.018 Search in Google Scholar

[18] P.Streitenberger, D.Moellner: Acta Mater.59 (2011) 4235. 10.1016/j.actamat.2011.03.048 Search in Google Scholar

[19] V.Y.Novikov: Mater. Lett.84 (2012) 136. 10.1016/j.matlet.2012.06.056 Search in Google Scholar

[20] L.A.Barrales-Mora, G.Gottstein, L.S.Shvindlerman: Acta Mater.60 (2012) 546. 10.1016/j.actamat.2011.10.022 Search in Google Scholar

[21] P.Fortier, G.Palumbo, G.D.Bruce, W.A.Miller, K.T.Aust: Scr. Metall. Mater.25 (1991) 177. 10.1016/0956-716X(91)90376-C Search in Google Scholar

[22] H.Kim, Y.Xuan, P.D.Ye, R.Narayanan, A.H.King: Acta Mater.57 (2009) 3662. 10.1016/j.actamat.2008.09.031 Search in Google Scholar

[23] S.G.Srinivasan, J.W.Cahn, H.Jónsson, G.Kalonji: Acta Mater.47 (1999) 2821. 10.1016/S1359-6454(99)00120-2 Search in Google Scholar

[24] A.Caro, H.Van Swygenhoven: Phys. Rev. B: Condens. Matter63 (2001) 134101. 10.1103/PhysRevB.63.134101 Search in Google Scholar

[25] M.Upadhyay, L.Capolungo, V.Taupin, C.Fressengeas: Int. J. Solids Struct.48 (2011) 3176. 10.1016/j.ijsolstr.2011.07.009 Search in Google Scholar

[26] S.Shekhar, A.H.King: Acta Mater.56 (2008) 5728. 10.1016/j.actamat.2008.07.053 Search in Google Scholar

[27] H.Rösner, C.Kübel, Y.Ivanisenko, L.Kurmanaeva, S.V.Divinski, M.Peterlechner, G.Wilde: Acta Mater.59 (2011) 7380. 10.1016/j.actamat.2011.08.020 Search in Google Scholar

[28] B.Zhao, J.C.Verhasselt, L.S.Shvindlerman, G.Gottstein: Acta Mater.58 (2010) 5646. 10.1016/j.actamat.2010.06.017 Search in Google Scholar

[29] D.A.Molodov, U.Czubayko, G.Gottstein, L.S.Shvindlerman: Scr. Metall. Mater.32 (1995) 529. 10.1016/0956-716X(95)90832-5 Search in Google Scholar

[30] Z.Peng: Analysis of AFM images for triple line energy measurements, RWTH Aachen University, (2012). Search in Google Scholar

[31] B.Zhao, A.Ziemons, L.S.Shvindlerman, G.Gottstein: Acta Mater.60 (2012) 811. 10.1016/j.actamat.2011.10.034 Search in Google Scholar

[32] P.Keblinski, S.R.Phillpot, D.Wolf, H.Gleiter: Acta Mater.45 (1997) 987. 10.1016/S1359-6454(96)00236-4 Search in Google Scholar

[33] B.K.Yoon, S.Y.Choi, T.Yamamoto, Y.Ikuhara, S.J.L.Kang: Acta Mater.57 (2009) 2128. 10.1016/j.actamat.2009.01.005 Search in Google Scholar

Received: 2014-05-23
Accepted: 2014-07-25
Published Online: 2014-12-05
Published in Print: 2014-12-08

© 2014, Carl Hanser Verlag, München