Accessible Requires Authentication Published by De Gruyter December 5, 2014

Phase fraction mapping in the as-cast microstructure of extrudable 6xxx aluminum alloys

Panagiota I. Sarafoglou and Gregory N. Haidemenopoulos


The mapping of Mg2Si and β-AlFeSi phase fractions in the as-cast microstructure of Al–Mg–Si–Fe–Mn (6xxx series) alloys has been performed over the useful composition range (0–1.2 mass%) of the principal alloying elements Mg and Si. The calculations were based on the Scheil–Gulliver assumption of infinite diffusion in the liquid and limited diffusion in the solid state. The computed phase fractions were validated with experimental measurements of phase fractions. The mapping procedure allows the control of intermetallic phases in the as-cast microstructure, the minimization of the β-AlFeSi phase in particular, which is a significant prerequisite in obtaining enhanced extrudability, combined with high strength in this alloy series. Construction of maps for different levels of Mn has shown that addition of Mn could allow for higher alloying with Mg and Si, in order to obtain higher amounts of Mg2Si, without at the same time increasing the β-AlFeSi phase in the as-cast microstructure.

* Correspondence address, Professor Gregory N. Haidemenopoulos, Department of Mechanical Engineering, University of Thessaly, Volos 38334, Greece, Tel.: +302421074062, Fax: +302421074061, E-mail:


[1] Y.L.Liu, S.B.Kang: J. Mater. Sci.32 (1997) 14431447. 10.1023/A:1018545732009 Search in Google Scholar

[2] M.Cai, J.D.Robson, G.W.Lorimer, N.C.Parson: Mater. Sci. Forum396–402 (2002) 209214. 10.4028/ Search in Google Scholar

[3] N.C.W.Kuijpers: Kinetics of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloys, Ph.D. Thesis, TU Delft, 2004. Search in Google Scholar

[4] S.Onurlu, A.Tekin: J. Mater. Sci.29 (1994) 16521655. 10.1007/BF00368940 Search in Google Scholar

[5] H.Tanihata, T.Sugawara, K.Matsuda, S.Ikeno: J. Mater. Sci.34 (1999) 12051210. 10.1023/A:1004504805781 Search in Google Scholar

[6] O.Engler, Z.Liu, K.Kuhnke: J. Alloys Compd.560 (2013) 111122. 10.1016/j.jallcom.2013.01.163 Search in Google Scholar

[7] O.Engler, G.Laptyeva, N.Wang: Mater. Charact.79 (2013) 6075. 10.1016/j.matchar.2013.02.012 Search in Google Scholar

[8] N.C.W.Kuijpers, F.J.Vermolen, K.Vuik, S.van der Zwaag: Mater. Trans.44 (2003) 14481456. 10.2320/matertrans.44.1448 Search in Google Scholar

[9] G.N.Haidemenopoulos, H.Kamoutsi, A.D.Zervaki: J. Mater. Process. Technol.212 (2012) 22552260. 10.1016/j.jmatprotec.2012.06.026 Search in Google Scholar

[10] W.D.Fei, S.B.Kang: J. Mater. Sci. Lett.14 (1995) 17951797. 10.1007/BF00271010 Search in Google Scholar

[11] A.Verma, S.Kumar, P.S.Grant, K.A.Q.O'Reilly: J. Alloys Compd.55 (2013) 274282. 10.1016/j.jallcom.2012.12.077 Search in Google Scholar

[12] G.Mrowka-Nowotnik, J.Sieniawski, M.Wierzbinska: Arch. Mater. Sci. Eng.28 (2007) 6976. Search in Google Scholar

[13] A.Wimmer, J.Lee, P.Schumacher: Berg- Huttenmann. Monatsh.157 (2012) 301305. 10.1007/s00501-012-0034-7 Search in Google Scholar

[14] J.O.Andersson, T.Helander, L.Höglund, P.Shi, B.Sundman: Calphad26 (2002) 273312. 10.1016/S0364-5916(02)00037-8 Search in Google Scholar

[15] H.L.Lukas, S.G.Fries, B.Sundman: Computational thermodynamics, the Calphad method, Cambridge University Press (2007). 10.1017/CBO9780511804137 Search in Google Scholar

[16] J.Ansara, A.T.Dinsdale, M.H.Rand: COST 507 Thermochemical database for light metal alloys, European Community publication 2, EUR18449 (1991). Search in Google Scholar

[17] Y.Du, Y.A.Chang, S.D.Liu, B.Y.Huang, F.Y.Xie, Y.Yang, S.L.Chen: Z. Metallkd.96 (2005) 13511362. 10.3139/146.101185 Search in Google Scholar

[18] J.Lacaze, L.Eleno, B.Sundman: Metall. Mater. Trans.A41 (2010) 22082215. 10.1007/s11661-010-0263-x Search in Google Scholar

[19] G.Sha, K.A.Q.O'Reilly, B.Cantor, J.M.Titchmarsh, R.G.Hamerton: Acta Mater.51 (2003) 18831897. 10.1016/S1359-6454(02)00595-5 Search in Google Scholar

[20] T.Smith, K.A.Q.O'Reilly, S.Kumar, I.Stone: Metall. Mater. Trans.A44 (2013) 48664871. 10.1007/s11661-013-1934-1 Search in Google Scholar

[21] M.Wu, A.Ludwig: Metall. Mater. Trans.A38 (2007) 14651475. 10.1007/s11661-007-9175-9 Search in Google Scholar

[22] M.Wu, J.Li, A.Ludwig, A.Kharicha: Comput. Mater. Sci.79 (2013) 830840. 10.1016/j.commatsci.2013.05.015 Search in Google Scholar

[23] A.Borgenstam, L.Höglund, J.Ågren, A.Engström: J. Phase Equilib.21 (2000) 269280. 10.1361/105497100770340057 Search in Google Scholar

[24] ASTM E-562 Specification, Standard Test Method for Determing Volume Fraction by Systematic Manual Point Count, American Society for Testing and Materials, PA, USA (2003). Search in Google Scholar

[25] J.W.Rayleigh: Philos. Mag.34 (1892) 481502. 10.1080/14786449208620364 Search in Google Scholar

[26] W.Zhang, Y.Du, Y.Peng, G.Wen, S.Wang: Int. J. Refract. Met. Hard Mater.104 (2013) 721735. Search in Google Scholar

[27] L.F.Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, London-Boston (1976). 10.1016/B978-0-408-70932-3.50032-2 Search in Google Scholar

[28] M.Warmuzek, K.Rabczak, J.Sieniawski: J. Mater. Process. Technol.175 (2006) 421426. 10.1016/j.jmatprotec.2005.04.005 Search in Google Scholar

[29] Y.L.Liu, S.B.Kang, H.W.Kim: Mater. Lett.41 (1999) 267272. 10.1016/S0167-577X(99)00141-X Search in Google Scholar

[30] Y.Birol: Mater. Charact.73 (2012) 3742. 10.1016/j.matchar.2012.07.015 Search in Google Scholar

Received: 2014-05-15
Accepted: 2014-07-25
Published Online: 2014-12-05
Published in Print: 2014-12-08

© 2014, Carl Hanser Verlag, München