Accessible Requires Authentication Published by De Gruyter April 23, 2015

Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep

Ramona Rynko, Axel Marquardt, Alexander Paulsen, Jan Frenzel, Christoph Somsen and Gunther Eggeler

Abstract

Alloys based on the titanium–tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 °C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti70Ta30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 °C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol−1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.


* Correspondence address, Ramona Rynko, M. Sc., Lehrstuhl Werkstoffwissenschaft, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, Tel.: +49(0)234-32-27898, E-mail:

References

[1] DuerigT., PeltonA., StöckelD.: Mater. Sci. Eng., A-struct.273–275 (1999) 149160. 10.1016/S0921-5093(99)00294-4 Search in Google Scholar

[2] SachdevaR.C.L., MiyazakiS., in: BuschowK.H.J., CahnR.W., FlemingsM.C., IlschnerB., KramerE.J., MahajanS., VeyssièreP. (Eds.), Encyclopedia of Materials: Science and Technology, 2nd Ed., Elsevier, Oxford (2001) 61556160. 10.1016/B0-08-043152-6/01093-7 Search in Google Scholar

[3] LagoudasD.C.: Shape Memory Alloys: Modeling and Engineering Applications, SpringerUS, Boston (2008). 10.1007/978-0-387-47685-8 Search in Google Scholar

[4] OtsukaK., WaymanC.M., in: OtsukaK., WaymanC.M. (Eds.), Shape Memory Materials, Cambridge University Press, United Kingdom, Cambridge (1999) 126. Search in Google Scholar

[5] SutouY., KoedaN., OmoriT., KainumaR., IshidaK.: Acta Mater.57 (2009) 57485758. 10.1016/j.actamat.2009.08.003 Search in Google Scholar

[6] OtsukaK., RenX.: Prog. Mater. Sci.50 (2005) 511678. 10.1016/j.pmatsci.2004.10.001 Search in Google Scholar

[7] NoebeR., BilesT., S.A.PadulaII, in: SoboyejoW.O., SrivatsanT.S. (Eds.), Advanced Structural Materials: Properties, Design Optimization, and Applications, CRC Press (2006) 145186. 10.1201/9781420017465.ch7 Search in Google Scholar

[8] FrenzelJ., GeorgeE.P., DlouhyA., SomsenC., WagnerM.F.X., EggelerG.: Acta Mater.58 (2010) 34443458. 10.1016/j.actamat.2010.02.019 Search in Google Scholar

[9] FirstovG.S., Van HumbeeckJ., KovalY.N.: Mater. Sci. Eng., A-struct.378 (2004) 210. 10.1016/j.msea.2003.10.324 Search in Google Scholar

[10] MaJ., KaramanI., NoebeR.D.: Int. Mater. Rev.55 (2010) 257315. 10.1179/095066010x12646898728363 Search in Google Scholar

[11] BuenconsejoP.J.S.: University of Tsukuba, Japan (2009). Search in Google Scholar

[12] BywaterK.A., ChristianJ.W.: Philos. Mag.25 (1972) 12491273. 10.1080/14786437208223852 Search in Google Scholar

[13] MurrayJ.L.: Bulletin of Alloy Phase Diagrams2 (1), (1981) 6266. 10.1007/BF02873703 Search in Google Scholar

[14] BuenconsejoP.J.S., KimH.Y., MiyazakiS.: Acta Mater.57 (2009) 25092515. 10.1016/j.actamat.2009.02.007 Search in Google Scholar

[15] BuenconsejoP.J.S., KimH.Y., HosodaH., MiyazakiS.: Acta Mater.57 (2009) 10681077. 10.1016/j.actamat.2008.10.041 Search in Google Scholar

[16] FirstovG.S., Van HumbeeckJ., KovalY.N.: Scr. Mater.50 (2004) 243248. 10.1016/j.scriptamat.2003.09.010 Search in Google Scholar

[17] BuenconsejoP.J.S., KimH.Y., MiyazakiS.: Scr. Mater.64 (2011) 11141117. 10.1016/j.scriptamat.2011.03.004 Search in Google Scholar

[18] IkedaM., KomatsuS., NakamuraY.: Mater. Trans.43 (2002) 29842990. 10.2320/matertrans.43.1577 Search in Google Scholar

[19] ZhangJ., RynkoR., FrenzelJ., SomsenC., EggelerG.: Int. J. Mater. Res.104 (2014) 156167. 10.3139/146.111010 Search in Google Scholar

[20] KolbeM., MurkenJ., PistolekD., EggelerG., KlamH.J.: Mat.-wiss.u.Werkstofftech.30 (1999) 465472. 10.1002/(SICI)1521-4052(199908)30:8<465::AID-MAWE465>3.0.CO;2-L Search in Google Scholar

[21] MälzerG.: Ruhr-Universität Bochum (2006). Search in Google Scholar

[22] PeterD., OttoF., DepkaT., NörtershäuserP., EggelerG.: Mat.-wiss.u.Werkstofftech.42 (2011) 493499. 10.1002/mawe.201100682 Search in Google Scholar

[23] ReimerL.: Scanning Electron Microscopy, Springer, Berlin (1998). 10.1007/978-3-540-38967-5 Search in Google Scholar

[24] JácomeL. Agudo, EggelerG., DlouhýA.: Ultramicroscopy122 (2012) 4859. 10.1016/j.ultramic.2012.06.017 Search in Google Scholar

[25] EggelerG.: Acta Metall. Mater.39 (1991) 221231. 10.1016/0956-7151(91)90270-B Search in Google Scholar

[26] ČadekJ.: Creep in metallic materials, Elsevier, Amsterdam, Oxford, New York, Tokyo (1988). Search in Google Scholar

[27] CahoonJ.R., SherbyO.D.: Metall. Trans. A23 (1992) 24912500. 10.1007/BF02658053 Search in Google Scholar

[28] MurrayJ.L., in: MassalskiT.B., OkamotoH., SubramanianP.R., KacprzakL. (Eds.), Binary Alloy Phase Diagrams, 2nd Ed., ASM International, Materials Park (OH) (1990). Search in Google Scholar

[29] OppenheimerS., YungA., DunandD.: Scr. Mater.57 (2007) 377380. 10.1016/j.scriptamat.2007.05.004 Search in Google Scholar

[30] Khalil-AllafiJ., DlouhyA., EggelerG.: Acta Mater.50 (2002) 42554274. 10.1016/S1359-6454(02)00257-4 Search in Google Scholar

[31] MichuttaJ., SomsenC., YawnyA., DlouhyA., EggelerG.: Acta Mater.54 (2006) 35253542. 10.1016/j.actamat.2006.03.036 Search in Google Scholar

[32] EggelerG., NeukingK., DlouhyA., KobusE.: Mater. Sci. Forum (2000) 183186. 10.4028/www.scientific.net/MSF.327-328.183 Search in Google Scholar

[33] KobusE., NeukingK., EggelerG., WittkampI.: Prakt. Metallogr.39 (2002) 177186. Search in Google Scholar

[34] RaubC.J., ZwickerU.: Phys. Rev.137 (1965) A142A143. 10.1103/PhysRev.137.A142 Search in Google Scholar

[35] KostkaA., TakK.G., HellmigR.J., EstrinY., EggelerG.: Acta Mater.55 (2007) 539550. 10.1016/j.actamat.2006.08.046 Search in Google Scholar

[36] KarlssonN.: J. Inst. Met.79 (1951) 391405. Search in Google Scholar

[37] WilliamsD.B., CarterC.B.: Transmission Electron Microscopy, Diffraction II, Springer, New York (1996). 10.1007/978-1-4757-2519-3 Search in Google Scholar

[38] BanumathyS., MandalR.K., SinghA.K.: J. Appl. Phys.106 (2009) 093518. 10.1063/1.3255966 Search in Google Scholar

[39] WilliamsD.B., CarterC.B.: Transmission Electron Microscopy, Imaging III, Springer, New York (1996). 10.1007/978-1-4757-2519-3 Search in Google Scholar

[40] ParsaA.B., WollgrammP., BuckH., SomsenC., KostkaA., PovstugarI., ChoiP.-P., RaabeD., DlouhyA., MüllerJ., SpieckerE., DemtroderK., SchreuerJ., NeukingK., EggelerG.: Adv. Eng. Mater. (2014). 10.1002/adem.201400136 Search in Google Scholar

[41] UnderwoodE.E.: Quantitative Stereology, Addison-Wesley Pub. Co. (1970). Search in Google Scholar

[42] CaoS., SomsenC., CroitoruM., SchryversD., EggelerG.: Scr. Mater.62 (2010) 399402. 10.1016/j.scriptamat.2009.11.040 Search in Google Scholar

[43] CaoS., NishidaM., SchryversD.: Acta Mater.59 (2011) 17801789. 10.1016/j.actamat.2010.11.044 Search in Google Scholar

[44] CaoS., KeC.B., ZhangX.P., SchryversD.: J. Alloys Compd.577, Suppl. 1 (2013) S215S218. 10.1016/j.jallcom.2012.02.013 Search in Google Scholar

Received: 2014-09-04
Accepted: 2014-11-06
Published Online: 2015-04-23
Published in Print: 2015-04-14

© 2015, Carl Hanser Verlag, München