Accessible Unlicensed Requires Authentication Published by De Gruyter April 23, 2015

Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep

Ramona Rynko, Axel Marquardt, Alexander Paulsen, Jan Frenzel, Christoph Somsen and Gunther Eggeler


Alloys based on the titanium–tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 °C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti70Ta30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 °C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol−1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.

* Correspondence address, Ramona Rynko, M. Sc., Lehrstuhl Werkstoffwissenschaft, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, Tel.: +49(0)234-32-27898, E-mail:


[1] DuerigT., PeltonA., StöckelD.: Mater. Sci. Eng., A-struct.273–275 (1999) 149160. 10.1016/S0921-5093(99)00294-4Search in Google Scholar

[2] SachdevaR.C.L., MiyazakiS., in: BuschowK.H.J., CahnR.W., FlemingsM.C., IlschnerB., KramerE.J., MahajanS., VeyssièreP. (Eds.), Encyclopedia of Materials: Science and Technology, 2nd Ed., Elsevier, Oxford (2001) 61556160. 10.1016/B0-08-043152-6/01093-7Search in Google Scholar

[3] LagoudasD.C.: Shape Memory Alloys: Modeling and Engineering Applications, SpringerUS, Boston (2008). 10.1007/978-0-387-47685-8Search in Google Scholar

[4] OtsukaK., WaymanC.M., in: OtsukaK., WaymanC.M. (Eds.), Shape Memory Materials, Cambridge University Press, United Kingdom, Cambridge (1999) 126.Search in Google Scholar

[5] SutouY., KoedaN., OmoriT., KainumaR., IshidaK.: Acta Mater.57 (2009) 57485758. 10.1016/j.actamat.2009.08.003Search in Google Scholar

[6] OtsukaK., RenX.: Prog. Mater. Sci.50 (2005) 511678. 10.1016/j.pmatsci.2004.10.001Search in Google Scholar

[7] NoebeR., BilesT., S.A.PadulaII, in: SoboyejoW.O., SrivatsanT.S. (Eds.), Advanced Structural Materials: Properties, Design Optimization, and Applications, CRC Press (2006) 145186. 10.1201/9781420017465.ch7Search in Google Scholar

[8] FrenzelJ., GeorgeE.P., DlouhyA., SomsenC., WagnerM.F.X., EggelerG.: Acta Mater.58 (2010) 34443458. 10.1016/j.actamat.2010.02.019Search in Google Scholar

[9] FirstovG.S., Van HumbeeckJ., KovalY.N.: Mater. Sci. Eng., A-struct.378 (2004) 210. 10.1016/j.msea.2003.10.324Search in Google Scholar

[10] MaJ., KaramanI., NoebeR.D.: Int. Mater. Rev.55 (2010) 257315. 10.1179/095066010x12646898728363Search in Google Scholar

[11] BuenconsejoP.J.S.: University of Tsukuba, Japan (2009).Search in Google Scholar

[12] BywaterK.A., ChristianJ.W.: Philos. Mag.25 (1972) 12491273. 10.1080/14786437208223852Search in Google Scholar

[13] MurrayJ.L.: Bulletin of Alloy Phase Diagrams2 (1), (1981) 6266. 10.1007/BF02873703Search in Google Scholar

[14] BuenconsejoP.J.S., KimH.Y., MiyazakiS.: Acta Mater.57 (2009) 25092515. 10.1016/j.actamat.2009.02.007Search in Google Scholar

[15] BuenconsejoP.J.S., KimH.Y., HosodaH., MiyazakiS.: Acta Mater.57 (2009) 10681077. 10.1016/j.actamat.2008.10.041Search in Google Scholar

[16] FirstovG.S., Van HumbeeckJ., KovalY.N.: Scr. Mater.50 (2004) 243248. 10.1016/j.scriptamat.2003.09.010Search in Google Scholar

[17] BuenconsejoP.J.S., KimH.Y., MiyazakiS.: Scr. Mater.64 (2011) 11141117. 10.1016/j.scriptamat.2011.03.004Search in Google Scholar

[18] IkedaM., KomatsuS., NakamuraY.: Mater. Trans.43 (2002) 29842990. 10.2320/matertrans.43.1577Search in Google Scholar

[19] ZhangJ., RynkoR., FrenzelJ., SomsenC., EggelerG.: Int. J. Mater. Res.104 (2014) 156167. 10.3139/146.111010Search in Google Scholar

[20] KolbeM., MurkenJ., PistolekD., EggelerG., KlamH.J.: Mat.-wiss.u.Werkstofftech.30 (1999) 465472. 10.1002/(SICI)1521-4052(199908)30:8<465::AID-MAWE465>3.0.CO;2-LSearch in Google Scholar

[21] MälzerG.: Ruhr-Universität Bochum (2006).Search in Google Scholar

[22] PeterD., OttoF., DepkaT., NörtershäuserP., EggelerG.: Mat.-wiss.u.Werkstofftech.42 (2011) 493499. 10.1002/mawe.201100682Search in Google Scholar

[23] ReimerL.: Scanning Electron Microscopy, Springer, Berlin (1998). 10.1007/978-3-540-38967-5Search in Google Scholar

[24] JácomeL. Agudo, EggelerG., DlouhýA.: Ultramicroscopy122 (2012) 4859. 10.1016/j.ultramic.2012.06.017Search in Google Scholar

[25] EggelerG.: Acta Metall. Mater.39 (1991) 221231. 10.1016/0956-7151(91)90270-BSearch in Google Scholar

[26] ČadekJ.: Creep in metallic materials, Elsevier, Amsterdam, Oxford, New York, Tokyo (1988).Search in Google Scholar

[27] CahoonJ.R., SherbyO.D.: Metall. Trans. A23 (1992) 24912500. 10.1007/BF02658053Search in Google Scholar

[28] MurrayJ.L., in: MassalskiT.B., OkamotoH., SubramanianP.R., KacprzakL. (Eds.), Binary Alloy Phase Diagrams, 2nd Ed., ASM International, Materials Park (OH) (1990).Search in Google Scholar

[29] OppenheimerS., YungA., DunandD.: Scr. Mater.57 (2007) 377380. 10.1016/j.scriptamat.2007.05.004Search in Google Scholar

[30] Khalil-AllafiJ., DlouhyA., EggelerG.: Acta Mater.50 (2002) 42554274. 10.1016/S1359-6454(02)00257-4Search in Google Scholar

[31] MichuttaJ., SomsenC., YawnyA., DlouhyA., EggelerG.: Acta Mater.54 (2006) 35253542. 10.1016/j.actamat.2006.03.036Search in Google Scholar

[32] EggelerG., NeukingK., DlouhyA., KobusE.: Mater. Sci. Forum (2000) 183186. 10.4028/ in Google Scholar

[33] KobusE., NeukingK., EggelerG., WittkampI.: Prakt. Metallogr.39 (2002) 177186.Search in Google Scholar

[34] RaubC.J., ZwickerU.: Phys. Rev.137 (1965) A142A143. 10.1103/PhysRev.137.A142Search in Google Scholar

[35] KostkaA., TakK.G., HellmigR.J., EstrinY., EggelerG.: Acta Mater.55 (2007) 539550. 10.1016/j.actamat.2006.08.046Search in Google Scholar

[36] KarlssonN.: J. Inst. Met.79 (1951) 391405.Search in Google Scholar

[37] WilliamsD.B., CarterC.B.: Transmission Electron Microscopy, Diffraction II, Springer, New York (1996). 10.1007/978-1-4757-2519-3Search in Google Scholar

[38] BanumathyS., MandalR.K., SinghA.K.: J. Appl. Phys.106 (2009) 093518. 10.1063/1.3255966Search in Google Scholar

[39] WilliamsD.B., CarterC.B.: Transmission Electron Microscopy, Imaging III, Springer, New York (1996). 10.1007/978-1-4757-2519-3Search in Google Scholar

[40] ParsaA.B., WollgrammP., BuckH., SomsenC., KostkaA., PovstugarI., ChoiP.-P., RaabeD., DlouhyA., MüllerJ., SpieckerE., DemtroderK., SchreuerJ., NeukingK., EggelerG.: Adv. Eng. Mater. (2014). 10.1002/adem.201400136Search in Google Scholar

[41] UnderwoodE.E.: Quantitative Stereology, Addison-Wesley Pub. Co. (1970).Search in Google Scholar

[42] CaoS., SomsenC., CroitoruM., SchryversD., EggelerG.: Scr. Mater.62 (2010) 399402. 10.1016/j.scriptamat.2009.11.040Search in Google Scholar

[43] CaoS., NishidaM., SchryversD.: Acta Mater.59 (2011) 17801789. 10.1016/j.actamat.2010.11.044Search in Google Scholar

[44] CaoS., KeC.B., ZhangX.P., SchryversD.: J. Alloys Compd.577, Suppl. 1 (2013) S215S218. 10.1016/j.jallcom.2012.02.013Search in Google Scholar

Received: 2014-09-04
Accepted: 2014-11-06
Published Online: 2015-04-23
Published in Print: 2015-04-14

© 2015, Carl Hanser Verlag, München