Accessible Requires Authentication Published by De Gruyter April 23, 2015

Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range

Nenad Milošević and Ivana Nikolić

Abstract

This paper presents experimental results on four thermophysical properties of pure polycrystalline ruthenium samples over a wide temperature range. Specific heat capacity and specific electrical resistivity were measured from 250 to 2 500 K, while hemispherical total emissivity and normal spectral emissivity at 900 nm were measured from 1 300 to 2 500 K. All the properties were obtained by using the pulse calorimetry technique. The 200 mm long specimens were in the form of a thin rod, of about 3 mm in diameter. For necessary corrections, literature data on thermal linear expansion were applied. The results are compared with available literature data and discussed. The specific heat capacity and specific electrical resistivity measurements did not indicate any allotropic transformation of the samples over the entire temperature range.


* Correspondence address, Dr. Nenad Milošević, Institute VINČA, P.O. Box 522, 11001 Belgrade, Serbia, Tel.: +381 11 6308 609, Fax: +381 11 6453 670, E-mail:

References

[1] HammondC., in: LideD. (Ed.), CRC Handbook of Chemistry and Physics, Section 4 – Properties of the Elements and Inorganic Compounds, CRC Press, Boca Raton, FL, (2005) 426. Search in Google Scholar

[2] KenisarinM., BerezinB., GorinaN., KatsS., PolyakovaV., SavitskiiE., ChekhovskoiV.: High Temp.12 (1974) 1159. Search in Google Scholar

[3] BedfordR., BonnierG., MaasH., PaveseF.: Metrologia33 (1996) 133. 10.1088/0026-1394/33/2/3 Search in Google Scholar

[4] DouglassR., AdkinsE.: Trans. Met. Soc. AIME221 (1961) 248. Search in Google Scholar

[5] BiceV., JacobsonD., in: AIAA 20th Thermophysics Conference, VA, USA (1985) AIAA 85-0987. Search in Google Scholar

[6] WallR., BaschD., JacobsonD.: J. Mater. Eng. Perform.1 (1992) 679. 10.1007/BF02649249 Search in Google Scholar

[7] HolzmannH.: Siebert Festschr. (1931) 147. Search in Google Scholar

[8] JaegerF., RosenbohmE.: Proc. Acad. Sci. (Amsterdam)34 (1931) 808. Search in Google Scholar

[9] SheindlinA., KatsS., BerezinB., ChekhovskoyV., KenisarinM.: Rev. Int. Hautes. Temp. Refract.12 (1975) 12. Search in Google Scholar

[10] SavitskiyE., GeldP., ZinovyevV., GorinaN., PolyakovaV.: Dokl. Akad. Nauk SSSR229 (1976) 841. Search in Google Scholar

[11] ChekhovskoiV., RamanauskasG.: Obz. Teplofiz. Svoist. Vesch.4–78 (1989) 3. Search in Google Scholar

[12] CordfunkeE., KoningsR.: Thermochim. Acta139 (1989) 99. 10.1016/0040-6031(89)87013-3 Search in Google Scholar

[13] JaegerF., RosenbohmE.: Proc. Acad. Sci. (Amsterdam)44 (1941) 144. Search in Google Scholar

[14] JustiE.: Z. Naturforsch.4A (1949) 472. Search in Google Scholar

[15] RudnitskiiA., PolyakovaR.: Zhur. Neorg. Khim.2 (1957) 2758. Search in Google Scholar

[16] PowelR., TyeR., WoodmanM.: Platinum Metals Rev.6 (1962) 138. Search in Google Scholar

[17] BinkeleL., BrunenM.: Thermal Conductivity, Electrical Resistivity and Lorentz Function Data for Metallic Elements in the Range 273 to 1500 K, Report Jül-3006, Forschungszentrum Jülich GmbH (1994) 121. Search in Google Scholar

[18] TouloukianY., BuycoE.: Thermophysical Properties of Matter, Vol. 4: Specific Heat, Metallic Elements and Alloys, IFI/Plenum Press, New York (1970) 28a. Search in Google Scholar

[19] RoukhlyadaN., SamoilovS.: Phys. Scr.62 (2000) 341. 10.1238/Physica.Regular.062a00341 Search in Google Scholar

[20] Emel'yanovV., MaslennikovO., RoukhlyadaP.: Appl. Surf. Sci.215 (2003) 96. 10.1016/S0169-4332(03)00312-X Search in Google Scholar

[21] RoukhlyadaN.: Phys. Scr.81 (2010) 045701. 10.1088/0031-8949/81/04/045701 Search in Google Scholar

[22] HallE., CrangleJ.: Acta Cryst.10 (1957) 240. 10.1107/S0365110X57000730 Search in Google Scholar

[23] RhysD.: J. Less-Common Met.1 (1959) 269. 10.1016/0022-5088(59)90004-9 Search in Google Scholar

[24] RossR., Hume-RotheryW.: J. Less-Common Met.5 (1963) 258. 10.1016/0022-5088(63)90031-6 Search in Google Scholar

[25] SchröderR., Schmitz-PrangheN., KohlhaasR.: Z. Metallkunde63 (1972) 12. Search in Google Scholar

[26] MiloševićN.: Int. J. Mater. Res.105 (2014) 571. 10.3139/146.111074 Search in Google Scholar

[27] MiloševićN., BabićM.: Int. J. Mater. Res.104 (2013) 462. 10.3139/146.110889 Search in Google Scholar

[28] CezairliyanA., in: MaglićK., CezairliyanA., PeletskyV. (Eds.), Compendium of Thermophysical Property Measurement Methods, Vol. 2 – Recommended Measurement Techniques and Practices, Plenum Press, New York, (1992) 483. Search in Google Scholar

[29] DobrosavljevićA., MaglićK.: High Temp.High Press. 21 (1989) 411. Search in Google Scholar

[30] TouloukianY., KirbyY., TaylorR., DesaiP.: Thermophysical Properties of Matter, Vol. 12: Thermal expansion-metallic elements and alloys, IFI/Plenum Press, New York (1975) 290. Search in Google Scholar

[31] MiloševićN., MaglićK.: Int. J. Thermophys.27 (2006) 530. 10.1007/s10765-006-0045-2 Search in Google Scholar

[32] MiloševićN., MaglićK.: Int. J. Thermophys.27 (2006) 1140. 10.1007/s10765-006-0045-2 Search in Google Scholar

[33] MiloševićN., MaglićK.: High Temp. High Press. 37 (2008) 187. Search in Google Scholar

[34] ClusiusV., PiesbergenU.: Z. Naturforschg.14a (1959) 23. Search in Google Scholar

[35] FurukawaG., ReillyM., GallagherJ.: J. Phys. Chem. Ref. Data3 (1974) 163. 10.1063/1.3253137 Search in Google Scholar

[36] ParadisP.-F., IshikawaT., YodaS.: J. Mater. Res.19 (2004) 590. 10.1557/jmr.2004.19.2.590 Search in Google Scholar

[37] ArblasterJ.: Calphad19 (1995) 339. 10.1016/0364-5916(95)00030-I Search in Google Scholar

Received: 2014-11-01
Accepted: 2014-12-02
Published Online: 2015-04-23
Published in Print: 2015-04-14

© 2015, Carl Hanser Verlag, München