Accessible Requires Authentication Published by De Gruyter April 23, 2015

Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments

Neva Štrekelj, Iztok Naglič, Grega Klančnik, Aleš Nagode and Boštjan Markoli

Abstract

In this study we investigated the microstructural changes after a variety of heat treatments of the quasicrystalline Al–Mn–Be–Cu alloy. In addition, we report on Vickers microhardness measurements and tensile-test results for the same materials. The samples were produced in a conventional manner, i. e., melting in an electrical resistance furnace in air and a gravitational casting process using a round copper die, which was in the form of a tensile-test specimen with a diameter of 5 mm. After the casting, some of the samples were just solution treated (annealed) and then quenched in water, while others were additionally aged (artificially – T6, or naturally – T4) or directly aged after the casting. In comparison to the as-cast state, the Vickers microhardness values of the aluminum-based matrix and the tensile properties of the samples decreased when just the solution treatment, T4 or T6 treatment was performed. The tensile properties also decreased after the heat treatments. A microstructural inspection revealed that the microstructural changes occurred already during the solution treatment, i. e., the formation of the phases Be4Al(Mn, Cu) and τ1-Al29Mn6Cu4 on the approximant H-Al4Mn and quasicrystalline i-phase particles' edges and the occurrence of precipitates in the αAl matrix. The precipitates that would additionally contribute to the hardening of the alloy did not form. The directly aged samples showed little or no increase in microhardness values in comparison to the as-cast samples, but possibilities of θ″ precipitates being formed from the already saturated matrix after the casting could not be excluded. After all the heat treatments the quasicrystalline i-phase, as a primary and eutectic phase, was preserved.


* Correspondence address, Neva Štrekelj, Department of Materials and Metallurgy, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia, Tel.: +386 40 172 890, E-mail:

References

[1] ShechtmanD., BlechI., GratiasD., CahnJ.W.: Phys. Rev. Lett.53 (1984) 1951. 10.1103/PhysRevLett.53.1951 Search in Google Scholar

[2] ZupaničF., BončinaT., RozmanN., AnzelI., GroggerW., GspanC., HoferF., MarkoliB.: Z. Kristallogr.223 (2008) 735. 10.1524/zkri.2008.1037 Search in Google Scholar

[3] ZupaničF., BončinaT., ŠuštaršičB., AnželI., MarkoliB.: Mater. Charact.59 (2008) 1245. 10.1016/j.matchar.2007.10.007 Search in Google Scholar

[4] TrebinH.R.: Quasicrystals, Structure and Physical Properties, Wiley-VCH GmbH & Co. KGaA, Weinheim (2003). 10.1002/3527606572 Search in Google Scholar

[5] ŠtrekeljN., NagličI., KarpeB., MarkoliB.: RMZ M&G58 (2011) 357. Search in Google Scholar

[6] SteurerW., DeloudiaS.: Acta Crystallogr. A64 (2008) 1. 10.1107/S0108767307038627 Search in Google Scholar

[7] BončinaT.: Karakterizacija kvazikristalnih zlitin Al–Cu–Fe in Al–Mn–Be, Master's thesis, Ljubljana (2006), Text in Slovenian. Search in Google Scholar

[8] RozmanN., ZupaničF., PetričM., MedvedJ., MrvarP., in: Conf. Proc. 48th Int. Foundry Conf., Portorož (2008). Search in Google Scholar

[9] RozmanN., MedvedJ., ZupaničF.: Philos. Mag.91 (2011) 4230. 10.1080/14786435.2011.608733 Search in Google Scholar

[10] ZupaničF., RozmanN.: Livarski vestnik59 (2012) 80. Search in Google Scholar

[11] BončinaT.: Stabilization and identification quasicrystalline phases in alloy of Al–Mn–Be, PhD thesis, Ljubljana (2010), Text in Slovenian. Search in Google Scholar

[12] RozmanN.: Development of high-strength quasicrystalline casting aluminum alloys, PhD thesis, Maribor (2011), Text in Slovenian. Search in Google Scholar

[13] ZupaničF., BončinaT., RozmanN., MarkoliB.: RMZ M&G58 (2011) 1. Search in Google Scholar

[14] BončinaT., MarkoliB., ZupaničF.: Metalurgija51 (2012) 167. Search in Google Scholar

[15] ZupaničF., LojenG., BarbaL., BončinaT.: Mater. Charact.70 (2012) 48. 10.1016/j.matchar.2012.05.002 Search in Google Scholar

[16] ZupaničF., in: Conf. Proc. 49th Int. Foundry Conf., Portorož (2009). Search in Google Scholar

[17] ŠtrekeljN., NagličI., KarpeB., KosecB., BončinaT., ZupaničF., MarkoliB., in: GodecM., DonikČ., PaulinI., KocijanA. (Eds.), 20th Jubilee Conf. on Mater. and Technol., Portorož (2012) 121. Search in Google Scholar

[18] ŠtrekeljN., NagličI., BočinaT., ZupaničF., MarkoliB., in: GodecM. (Ed.), 19th Conf. on Mater. and Technol., Portorož (2011) 131. Search in Google Scholar

[19] MarkoliB., BončinaT., ZupaničF., in: GodecM. (Ed.), 19th Conf. on Mater. and Technol., Portorož (2011) 28. Search in Google Scholar

[20] ASM International Handbook Committee: ASM Handbook, Vol. 4, Heat Treating, ASM International (1991). Search in Google Scholar

[21] SadelerR., ÖcalM.: Met. Mater. Int.18 (2012) 273. 10.1007/s12540-012-2010-x Search in Google Scholar

[22] SadelerR., TotikY., GavgaliM., KaymazI.: Mater. Des.25 (2004) 439. 10.1016/j.matdes.2003.12.003 Search in Google Scholar

[23] DasguptaR., MeenaiH., DasS.: J. Mater. Sci. Lett.22 (2003) 391. 10.1023/A:1022609513428 Search in Google Scholar

[24] OdabaşD., SuŞ.: Wear208 (1997) 25. 10.1016/S0043-1648(96)07378-4 Search in Google Scholar

[25] SadelerR.: Fatigue Fract. Eng. Mater. Struct.29 (2006) 1039. 10.1111/j.1460-2695.2006.01072.x Search in Google Scholar

[26] ASM International Handbook Committee: ASM Handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International (1997). Search in Google Scholar

[27] BončinaT., ČekadaM., MarkoliB., ZupaničF.: J. Alloys Compd.505 (2010) 486. 10.1016/j.jallcom.2010.06.111 Search in Google Scholar

[28] MarkoliB., BončinaT., ZupaničF.: Materialwiss. Werkstofftech.43 (2012) 340. 10.1002/mawe.201200951 Search in Google Scholar

[29] ChangH.J., FleuryE., LeeY.H., KimW.T., KimD.H.: Philos. Mag. Lett.84 (2004) 311. 10.1080/09500830410001675678 Search in Google Scholar

[30] ChangH.J., FleuryE., SongG.S., KimW.T., KimD.H.: J. Non-Cryst. Solids334 (2004) 12. 10.1016/j.jnoncrysol.2003.11.005 Search in Google Scholar

[31] DurbinT.L.: Modeling dissolution in aluminum alloys, PhD Thesis, Georgia Institute of Technology (2005). Search in Google Scholar

[32] http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/MaterialScience/pdf/Lecture_Notes/MLN_07.pdf. Search in Google Scholar

[33] http://www.cmse.ed.ac.uk/MSE3/Topics/MSE3-ferrous1.pdf. Search in Google Scholar

[34] http://dmseg5.case.edu/Classes/emse201/overheads/StreMech.pdf. Search in Google Scholar

[35] MarinkovićV.: Fizikalna metalurgija II, Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za materiale in metalurgijo, Ljubljana (1999), Text in Slovenian. Search in Google Scholar

[36] W.D.Callister, Jr., RethwischD.G.: Materials science and engineering: An introduction, 8th Ed., J. Wiley & Sons, Hoboken (2011). Search in Google Scholar

[37] RingerS.P., HonoK.: Mater. Charact.44 (2001) 101. 10.1016/S1044-5803(99)00051-0 Search in Google Scholar

[38] ZupaničF.: Met. Mater. Int.17 (2011) 865. 10.1007/s12540-011-6001-0 Search in Google Scholar

[39] TottenG.E., MacKenzieD.S. (Eds.), Handbook of Aluminum, Vol. 1, Marcel Dekker Inc., New York (2003) 273. 10.1201/9780203912591 Search in Google Scholar

Received: 2014-07-09
Accepted: 2014-11-27
Published Online: 2015-04-23
Published in Print: 2015-04-14

© 2015, Carl Hanser Verlag, München