Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 27, 2021

Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture

  • Omid Torabi EMAIL logo , Mohammad Hossein Golabgir , Hamid Tajizadegan and Sanaz Naghibi

Abstract

Three different approaches were used for the synthesis of niobium boride using a stoichiometric ratio of Mg–B2O3– Nb powder mixture: (i) thermal ignition, (ii) mechanochemical and (iii) a combined mechanical and thermal activation process. Phase transformation analysis and structural evaluation were carried out by means of differential thermal analysis techniques, X-ray diffractometry, scanning electron microscopy and transmission electron microscopy. During the thermal synthesis, the reaction between Mg and B2O3 partially occurred (liquid state reaction). The desired final phase (NbB2) was poorly obtained. Phase analysis revealed that the NbB2 phase was synthesized after 10 h of high energy ball milling. A pre-milling treatment of the powder mixture up to 2 h significantly reduced the reactions temperature (580 °C). Consequently, NbB2 was prepared simultaneously involving magnesiothermic reduction of B2O3 and reaction between elemental of Nb and boron. Mg3(BO3)2, as major by-product, was formed in noticeable amounts during the thermal process, while its quantity significantly decreased during mechanochemical synthesis and completely eliminated by using the combined mechanical and thermal synthesis.


Omid Torabi Department of Materials Engineering, Najafabad Branch Advanced Materials Research Center Islamic Azad University Isfahan, Po. Box: 517 Iran Tel.: +98(31)4229-1008 Fax.: +98(31)4229-1008

References

[1] K. Nakano, K. Doi, K. Kuwayama, T. Imura: J. Less-Common Met. 82 (1981) 309. DOI:10.1016/0022-5088(81)90233-210.1016/0022-5088(81)90233-2Search in Google Scholar

[2] W. Gordon, S.B. Soffer: J. Phys. Chem. Solid 36 (1975) 627. DOI:10.1016/0022-3697(75)90080-310.1016/0022-3697(75)90080-3Search in Google Scholar

[3] M. Usta: Surf. Coat. Technol. 194 (2005) 25. DOI:10.1016/j.surfcoat.2004.06.04010.1016/j.surfcoat.2004.06.040Search in Google Scholar

[4] T. Tsuchida, T. Kakuta: J. Alloys Compd. 398 (2005) 67. DOI:10.1016/j.jallcom.2005.01.04910.1016/j.jallcom.2005.01.049Search in Google Scholar

[5] T. Matsudaira, H. Itoh, S. Naka, H. Hamamoto: J. Less-Common Met. 155 (1989) 207. DOI:10.1016/0022-5088(89)90229-410.1016/0022-5088(89)90229-4Search in Google Scholar

[6] H. Takeya, A. Matsumoto, K. Hirata, Y.S. Sung, K. Togano: Physica C 412–414 (2004) 111. DOI:10.1016/j.physc.2003.12.02810.1016/j.physc.2003.12.028Search in Google Scholar

[7] C.L. Yeh, W.H. Chen: J. Alloys Compd. 420 (2006) 111. DOI:10.1016/j.jallcom.2005.10.03110.1016/j.jallcom.2005.10.031Search in Google Scholar

[8] O. Torabi, M.H. Golabgir, H. Tajizadegan, S. Naghibib, A. Jamshidi: Int. J. Mater. Res. (formerly Z. Metallkd.) 105 (2014) 778. DOI:10.3139/146.11108810.3139/146.111088Search in Google Scholar

[9] M. Jalaly, M.S. Bafghi, M. Tamizifar, F.J. Gotor: Adv. Appl. Ceram. 112 (2013) 383. DOI:10.1179/1743676113Y.000000009110.1179/1743676113Y.0000000091Search in Google Scholar

[10] M.J. Sayagués, M.A. Avilés, J.M. Córdoba, F.J. Gotor: Powder Technol. 256 (2014) 244. DOI:10.1016/j.powtec.2014.02.03110.1016/j.powtec.2014.02.031Search in Google Scholar

[11] C.L. Yeh, W.C. Kao: J. Alloys Compd. 615 (2014) 734. DOI:10.1016/j.jallcom.2014.06.16710.1016/j.jallcom.2014.06.167Search in Google Scholar

[12] C.L. Yeh, W.H. Chen: J. Alloys Compd. 422 (2006) 78. DOI:10.1016/j.jallcom.2005.11.05310.1016/j.jallcom.2005.11.053Search in Google Scholar

[13] D. Osso, O. Tillementa A. Mocellin, G. Le Caer, O. Babushkin, T. Lindbäck: J. Eur. Ceram. Soc. 15 (1995) 1207. DOI:10.1016/0955-2219(95)00096-810.1016/0955-2219(95)00096-8Search in Google Scholar

[14] T. Tsuchida, T. Kakuta: J. Eur. Ceram. Soc. 27 (2007) 527. DOI:10.1016/j.jeurceramsoc.2006.04.10610.1016/j.jeurceramsoc.2006.04.106Search in Google Scholar

[15] T. Tsuchida, T. Kakuta: J. Alloys Compd. 415 (2006) 156. DOI:10.1016/j.jallcom.2005.08.01210.1016/j.jallcom.2005.08.012Search in Google Scholar

[16] P. Balaz: Mechanochemistry in nanoscience and minerals engineering, Springer Berlin Heidelberg, Germany (2008).Search in Google Scholar

[17] L. Takacs: Int. J. SHS 18 (2009) 276. DOI:10.3103/S106138620904008610.3103/S1061386209040086Search in Google Scholar

[18] K. Iizumi, C. Sekiya.S. Okada, K. Kudou, T. Shishido: J. Eur. Ceram. Soc. 26 (2006) 635. DOI:10.1016/j.jeurceramsoc.2005.06.01210.1016/j.jeurceramsoc.2005.06.012Search in Google Scholar

[19] O. Torabi, R. Ebrahimi-Kahrizsangi, M.H. Golabgir, H. Tajizadegan, A. Jamshidi: Int. J. Refract. Met. Hard Mater. 48 (2015) 102. DOI:10.1016/j.ijrmhm.2014.07.04010.1016/j.ijrmhm.2014.07.040Search in Google Scholar

[20] M. Yaghoubi, O. Torabi: Int. J. Refract. Met. Hard Mater. 43 (2014) 132. DOI:10.1016/j.ijrmhm.2013.11.01410.1016/j.ijrmhm.2013.11.014Search in Google Scholar

[21] Y. Liu, S.Yin, Z. Guo, L. Hoyi: J. Mater. Res. 13 (1998) 1749. DOI:10.1557/JMR.1998.000610.1557/JMR.1998.0006Search in Google Scholar

[22] W.C. Lee, S.L. Chung: J. Am. Ceram. Soc. 80 (1997) 53. DOI:10.1111/j.1151-2916.1997.tb02790.x10.1111/j.1151-2916.1997.tb02790.xSearch in Google Scholar

Received: 2014-12-09
Accepted: 2015-01-23
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.3139/146.111222/html
Scroll to top button