Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 11, 2016

Strong cellular lattices with nitro-carburized stainless steel hollow trusses

  • Liang Dong , Arthur Heuer , Harold Kahn , Zhen Li , Vikram Deshpande and Haydn Wadley

Abstract

Collinear lattice structures have been fabricated from 304 stainless steel hollow tubes via an alternating collinear lay-up process followed by bonding using a vacuum brazing method. By varying the tube wall thickness from 50 to 203 μm, square and diamond lattice topologies with relative densities between 0.03 and 0.11 were manufactured in this way and their compressive mechanical responses were characterized. A low temperature nitro-carburization treatment was then performed on a second set of the collinear lattice cores at a temperature of 440°C for 20 h. The treatment created a thin (10 to 20 μm thick) extremely hard (∼12 GPa) surface layer on the interior and external surfaces of the hollow trusses. This significantly increased the compressive buckling resistance of individual trusses. Compressive strength enhancements (compared with untreated counterparts in the annealed (as brazed) condition) varied from 1.2 for thick walled tubes to 3.8 when the wall thickness was decreased to about twice the hardened layer depth. The moduli and strengths of all the lattices were found to increase with lattice relative density, and were well predicted by micromechanical models. The lowest relative density (thinnest wall) nitro-carburized hollow truss collinear lattice structures exhibited a specific compressive strength significantly higher than that of any other cellular metal reported to date. Nitro-carburized stainless steel collinear lattices therefore appear to be promising candidates for the cores of lightweight sandwich panels intended for elevated temperature and/or multifunctional applications.


*Correspondence address, Liang Dong, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22903, USA. Tel.: +1-434-982-5678, E-mail:

References

[1] J.Gibson, M.F.Ashby: Cellular Solids: Structure and Properties, 2nd ed.Cambridge University Press, Cambridge (1997). 10.1017/cbo9781139878326Search in Google Scholar

[2] V.S.Deshpande, N.A.Fleck: Int. J. Solids Struct.38 (2001) 6275. 10.1016/S0020-7683(01)00103-2Search in Google Scholar

[3] N.Wicks, J.W.Hutchinson: Int. J. Solids Struct.38 (2001) 5165. 10.1016/S0020-7683(00)00315-2Search in Google Scholar

[4] H.J.Rathbun, F.W.Zok, A.G.Evans: Int. J. Solids Struct.42 (2005) 6643. 10.1016/j.ijsolstr.2005.06.044Search in Google Scholar

[5] H.J.Rathbun, F.W.Zok, S.A.Waltner, C.Mercer, A.G.Evans, D.T.Queheillalt, H.N.G.Wadley: Acta Mater.54 (2006) 5509. 10.1016/j.actamat.2006.07.016Search in Google Scholar

[6] F.W.Zok, H.J.Rathbun, Z.Wei, A.G.Evans: Int. J. Solids Struct.40 (2003) 5707. 10.1016/S0020-7683(03)00375-5Search in Google Scholar

[7] J.Tian, T.Kim, T.J.Lu, H.P.Hodson, D.T.Queheillalt, H.N.G.Wadley: Int. J. Heat Mass Transfer47 (2004) 3171. 10.1016/j.ijheatmasstransfer.2004.02.010Search in Google Scholar

[8] J.Tian, T.J.Lu, H.P.Hodson, D.T.Queheillalt, H.N.G.Wadley: Int. J. Heat Mass Transfer50 (2007) 2521. 10.1016/j.ijheatmasstransfer.2006.11.042Search in Google Scholar

[9] D.D.Radford, N.A.Fleck, V.S.Deshpande. Int. J. Impact Eng.32 (2006) 968. 10.1016/j.ijimpeng.2004.08.007Search in Google Scholar

[10] Z.Wei, K.P.Dharmasena, H.N.G.Wadley, A.G.Evans: Int. J. Impact Eng.34 (2007) 1602. 10.1016/j.ijimpeng.2006.09.091Search in Google Scholar

[11] H.N.G.Wadley, K.P.Dharmasena, Y.Chen, P.Dudt, D.Knight, R.Charette, K.Kiddy: Int. J. Impact Eng.35 (2008) 1102. 10.1016/j.ijimpeng.2007.06.009Search in Google Scholar

[12] X.Wang, T.J.Lu: J. Acoust. Soc. Am.106 (1999) 756. 10.1121/1.427094Search in Google Scholar

[13] A.-M.Harte, N.A.Fleck, M.F.Ashby: Acta Mater.47 (1999) 2511. 10.1016/S1359-6454(99)00097-XSearch in Google Scholar

[14] F.Cote, V.S.Deshpande, N.A.Fleck, A.G.Evans: Mater. Sci. Eng. A380 (2004) 272. 10.1016/j.msea.2004.03.051Search in Google Scholar

[15] K.P.Dharmasena, H.N.G.Wadley, Z.Y.Xue, J.W.Hutchinson: Int. J. Impact Eng.35 (2008) 1063. 10.1016/j.ijimpeng.2007.06.008Search in Google Scholar

[16] H.J.Rathbun, Z.Wei, M.Y.He, F.W.Zok, A.G.Evans, D.J.Sypeck, H.N.G.Wadley: J. Appl. Mech.71 (2004) 368. 10.1115/1.1757487Search in Google Scholar

[17] H.N.G.Wadley: Adv. Eng. Mater.4 (2002) 726. 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-YSearch in Google Scholar

[18] H.N.G.Wadley, N.A.Fleck, A.G.Evans: Compos. Sci. Technol.63 (2003) 2331. 10.1016/S0266-3538(03)00266-5Search in Google Scholar

[19] F.W.Zok, S.A.Waltner, Z.Wei, H.J.Rathbun, R.M.McMeeking, A.G.Evans: Int. J. Solids Struct.41 (2004) 6249. 10.1016/j.ijsolstr.2004.05.045Search in Google Scholar

[20] D.T.Queheillat, H.N.G.Wadley: Mater. Sci. Eng. A397 (2005) 132. 10.1016/j.msea.2005.02.048Search in Google Scholar

[21] S.Lee, F.Barthelat, J.W.Hutchinson, H.D.Espinosa: Int. J. Plasticity22 (2006) 2118. 10.1016/j.ijplas.2006.02.006Search in Google Scholar

[22] D.T.Queheillalt, Y.Murty, H.N.G.Wadley: Scr. Mater.58 (2008) 76. 10.1016/j.scriptamat.2007.08.041Search in Google Scholar

[23] K.P.Dharmasena, H.N.G.Wadley, K.Williams, Z.Y.Xue, J.W.Hutchinson: Int. J. Impact Eng.38 (2011) 275. 10.1016/j.ijimpeng.2010.10.002Search in Google Scholar

[24] Y.H.Lee, B.KLee, I.Jeon, K.J.Kang: Acta Mater.55 (2007) 6084. 10.1016/j.actamat.2006.08.054Search in Google Scholar

[25] J.Wang, A.G.Evans, K.P.Dharmasena, H.N.G.Wadley: Int. J. Solids Struct.40 (2003) 6981. 10.1016/S0020-7683(03)00349-4Search in Google Scholar

[26] V.S.Deshpande, N.A.Fleck, M.F.Ashby: J. Mech. Phys. Solids49 (2001) 1747. 10.1016/S0022-5096(01)00010-2Search in Google Scholar

[27] D.J.Sypeck, H.N.G.Wadley: J. Mater. Res.16 (2001) 890. 10.1557/JMR.2001.0117Search in Google Scholar

[28] M.Zupan, V.S.Deshpande, N.A.Fleck: Eur. J. Mech. A/Solids23 (2004) 411. 10.1016/j.euromechsol.2004.01.007Search in Google Scholar

[29] D.T.Queheillalt, H.N.G.Wadley: Acta Mater.53 (2005) 303. 10.1016/j.actamat.2004.09.024Search in Google Scholar

[30] H.N.G.Wadley: Phil. Trans. R. Soc. A364 (2006) 31. 10.1098/rsta.2005.1697Search in Google Scholar PubMed

[31] L.Valdevit, J.W.Hutchinson, A.G.Evans: Int. J. Solids Struct.41 (2004) 5105. 10.1016/j.ijsolstr.2004.04.027Search in Google Scholar

[32] F.Cote, V.S.Deshpande, N.A.Fleck, A.G.Evans: Int. J. Solids Struct.43 (2006) 6220. 10.1016/j.ijsolstr.2005.07.045Search in Google Scholar

[33] J.M.Gere, S.P.Timoshenko: Mechanics of Materials, PWS Engineering, Boston (1984).Search in Google Scholar

[34] F.R.Shanley: Mechanics of Materials, McGraw-Hill, New York (1967).Search in Google Scholar

[35] S.M.Pingle, N.A.Fleck, V.S.Deshpande, H.N.G.Wadley: Int. J. Solids Struct.48 (2011) 3417. 10.1016/j.ijsolstr.2011.08.004Search in Google Scholar

[36] S.M.Pingle, N.A.Fleck, V.S.Deshpande, H.N.G.Wadley: Proc. R. Soc. A467 (2011) 985. 10.1098/rspa.2010.0329Search in Google Scholar

[37] Q.Zhang, J.M.Rotter: J. Struct. Eng.116 (1990) 2253. 10.1061/(ASCE)0733-9445(1990)116:8(2253)Search in Google Scholar

[38] Y.Boonyongmaneerat, C.A.Schuh, D.C.Dunand: Scr. Mater.59 (2008) 336. 10.1016/j.scriptamat.2008.03.035Search in Google Scholar

[39] A.Torrents, T.A.Schaedler, A.J.Jacobsen, W.B.Carter, L.Valdevit: Acta Mater.60 (2012) 3511. 10.1016/j.actamat.2012.03.007Search in Google Scholar

[40] L.M.Gordon, B.A.Bouwhuis, M.Suralvo, J.L.McCrea, G.Palumbo, G.D.Hibbard: Acta Mater.57 (2009) 932. 10.1016/j.actamat.2008.10.038Search in Google Scholar

[41] M.Suralvo, B.Bouwhuis, J.L.McCrea, G.Palumbo, G.D.Hibbard: Scr. Mater.58 (2008) 247. 10.1016/j.scriptamat.2007.10.018Search in Google Scholar

[42] S.Markkula, S.Storck, D.Burns, M.Zupan: Adv. Eng. Mater.11 (2009) 56. 10.1002/adem.200800284Search in Google Scholar

[43] B.A.Bouwhuis, J.L.McCrea, G.Palumbo, G.D.Hibbard: Acta Mater.57 (2009) 4046. 10.1016/j.actamat.2009.04.053Search in Google Scholar

[44] T.A.Schaedler, A.J.Jacobsen, A.Torrents, A.E.Sorensen, J.Lian, J.R.Greer, L.Valdevit, W.B.Carter: Science334 (2011) 962. 10.1126/science.1211649Search in Google Scholar

[45] Y.Cao, F.Ernst, G.M.Michal: Acta Mater.51 (2003) 4171. 10.1016/S1359-6454(03)00235-0Search in Google Scholar

[46] G.M.Michal, F.Ernst, H.Kahn, Y.Cao, F.Oba, N.Agarwal, A.H.Heuer: Acta Mater.54 (2006) 1597. 10.1016/j.actamat.2005.11.029Search in Google Scholar

[47] F.J.Martin, P.M.Natishan, E.J.Lemieux, T.M.Newbauer, R.J.Rayne, R.A.Bayles, H.Kahn, G.M.Michal, F.Ernst, A.H.Heuer: Metall. Mater. Trans. A40 (2009) 1805. 10.1007/s11661-009-9924-zSearch in Google Scholar

[48] N.Agarwal, H.Kahn, A.Avishai, G.Michal, F.Ernst, A.H.Heuer: Acta Mater.55 (2007) 5572. 10.1016/j.actamat.2007.06.025Search in Google Scholar

[49] X.Gu, G.M.Michal, F.Ernst, H.Kahn, A.H.Heuer: Metall. Mater. Trans. A45 (2014) 4268. 10.1007/s11661-014-2377-zSearch in Google Scholar

[50] D.Erdeniz, A.J.Levinson, K.W.Sharp, D.J.Rowenhorst, R.W.Fonda, D.C.Dunand: Metall. Mater. Trans. A46 (2015) 426. 10.1007/s11661-014-2602-9Search in Google Scholar

[51] L.St-Pierre, N.A.Fleck, V.S.Deshpande: Int. J. Solids Struct.51 (2014) 41. 10.1016/j.ijsolstr.2013.09.008Search in Google Scholar

[52] R.M.Wang, S.R.Zheng, Y.G.Zheng: Polymer matrix composites and technology, 1st edition, Woodhead Publishing, UK, 2011. 10.1533/9780857092229Search in Google Scholar

[53] D.N.William, H.J.Gao: J. Mech. Phys. Solids46 (1998) 411. 10.1016/S0022-5096(97)00086-0Search in Google Scholar

[54] K.J.R.Rasmussen: J. Constr. Steel Res.59 (2003) 47. 10.1016/S0143-974X(02)00018-4Search in Google Scholar

[55] K.Finnegan, G.Kooistra, H.N.G.Wadley, V.S.Deshpande: Int. J. Mater. Res.98 (2007) 1264. 10.3139/146.101594Search in Google Scholar

Received: 2015-06-17
Accepted: 2015-09-03
Published Online: 2016-01-11
Published in Print: 2016-01-08

© 2016, Carl Hanser Verlag, München

Downloaded on 26.9.2023 from https://www.degruyter.com/document/doi/10.3139/146.111312/html
Scroll to top button