Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 5, 2016

On the prediction of long term creep strength of creep resistant steels

Mi Yang , Qiao Wang , Xin-Li Song , Juan Jia and Zhi-Dong Xiang


When the conventional power law creep equation is applied to rationalise the creep data of creep resistant steels, its parameters depend strongly on stress and temperature and hence cannot be used to predict long term creep properties. Here, it is shown that this problem can be resolved if it is modified to satisfy two boundary conditions, i. e. when σ (stress) = 0, ε˙min (minimum creep rate) = 0, and when σ = σTS (tensile stress at creep temperature T), ε˙min = ∞. This can be achieved by substituting the reference stress σ0 in the conventional equation by the term (σTS – σ). The new power law creep equation describing the stress and temperature dependence of minimum creep rate can then be applied to predict long term creep strength from data of short term measurements. This is demonstrated using the creep and tensile strength data measured for 11Cr-2W-0.4Mo-1Cu-Nb-V steel (tube).

*Correspondence address, Professor Zhi-Dong Xiang, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P.R. China. Tel: +86 (0)27 68862108, Fax: +86 (0)27 68862529, E-mail:


[1] F.R.Larson: Trans. ASME74 (1952) 765.10.1515/9783111504148-028Search in Google Scholar

[2] S.S.Manson, A.M.Haferd: NACA-TN-2890 (1953).Search in Google Scholar

[3] R.Orr, O.Sherby, J.Dorn: Trans. ASM46 (1954) 113.Search in Google Scholar

[4] K.Maruyama, K.Yoshimi: J. Press. Vess. Technol.129 (2007) 449. 10.1115/1.2748825Search in Google Scholar

[5] K.Kimura, K.Sawada, H.Kushima, K.Kubo: Int. J. Mater. Res.99 (2008) 395. 10.3139/146.101651Search in Google Scholar

[6] W.Bendick, L.Cipolla, J.Gabrel, J.Hald: Int. J. Press. Vessels Pip.87 (2010) 304. 10.1016/j.ijpvp.2010.03.010Search in Google Scholar

[7] J.Bolton: Int. J. Pres. Vessels Pip.88 (2011) 158. 10.1016/j.ijpvp.2011.03001Search in Google Scholar

[8] V.S.Srinivasan, B.K.Choudhary, M.D.Mathew, T.Jayakumar: Mater. High Temp.29 (2012) 41. 10.3184/096034012X1326990282656Search in Google Scholar

[9] W.G.Kim, J.Y.Park, S.J.Kim, J.Jang: Mater. Des.51 (2013) 1045. 10.1016/j.matdes.2013.05.013Search in Google Scholar

[10] W.G.Kim, J.Y.Park, B.K.Choudhary, S.J.Kim, M.H.Kim, J.Jang: J. Mech. Sci. Technol.28 (2014) 4493. 10.1007/s12206-014-1049-7Search in Google Scholar

[11] D.Seruga, M.Nagode: Mater. Des.67 (2015) 180. 10.1016/j.matdes.2014.11.011Search in Google Scholar

[12] A.M.Brown, M.F.Ashby: Scr. Mater.14 (1980) 1297. 10.1016/0036-9748(80)90182-9Search in Google Scholar

[13] M.E.Kassner: Fundamentals of Creep in Metals and Alloys, 2nd Ed., Elsevier, Amsterdam (2008). 10.1016/B978-0-08-047561-5.00001-4Search in Google Scholar

[14] J.S.Lee, H.G.Armaki, K.Maruyama, T.Muraki, H.Asahi: Mater. Sci. Eng. A428 (2006) 270. 10.1016/j.msea.2006.05.010Search in Google Scholar

[15] B.Wilshire, A.J.Battenbough: Mater. Sci. Eng. A443 (2007) 156. 10.1016/j.msea.2006.08.094Search in Google Scholar

[16] B.Wilshire, P.J.Scharning: Scr. Mater.56 (2007) 701. 10.1016/j.scriptamat.2006.12.033Search in Google Scholar

[17] B.Wilshire, P.J.Scharning: Int. Mater. Rev.53 (2008) 91. 10.1179/174328008X254349Search in Google Scholar

[18] S.JWilliams, M.R.Bache, B.Wilshire: Mater. Sci. Technol.26 (2010) 1332. 10.1179/026708310X12712410311730Search in Google Scholar

[19] M.T.Whittaker, B.Wilshire: Metall. Mater. Trans. A44 (2013) S136. 10.1007/s11661-012-1160-2Search in Google Scholar

[20] NIMS creep data sheet no.48A, in Google Scholar

Received: 2015-08-28
Accepted: 2015-09-28
Published Online: 2016-02-05
Published in Print: 2016-02-10

© 2016, Carl Hanser Verlag, München

Downloaded on 28.1.2023 from
Scroll Up Arrow