Accessible Requires Authentication Published by De Gruyter February 5, 2016

Structure and properties of mesophase pitch-derived carbon foams reinforced by mesocarbon microbeads

Shan Li, Bo-Fan Lin, Shinn-Shyong Tzeng and Hsien-Tang Chiu

Abstract

Carbon foams were produced from mixtures of mesophase pitch and mesocarbon microbeads (MCMBs) and the effects of MCMB addition and the MCMB particle size on the structure and properties of the foams were investigated. Experimental results showed that the addition of MCMBs raised the compressive strength due to the reduction of micro-cracks as well as the increase of bulk density. The thermal diffusivity increased initially and then decreased when the amount of MCMBs was raised. Compared to the particle size of MCMB, concentration makes a larger contribution to pore size and properties under the current experimental conditions.


*Correspondence address, Professor Shinn-Shyong Tzeng, 7-1 Teh-Hui Street, Taipei 104, Taiwan. Tel.: +886 2 21822928 ext. 6223, Fax: +886 2 25866484, E-mail:

References

[1] W.Ford: US Patent 3121050 (1964). Search in Google Scholar

[2] N.C.Gallego, J.W.Klett: Carbon41 (2003) 1461. 10.1016/S0008-6223(03)00091-5 Search in Google Scholar

[3] A.H.Stiller, P.G.Stansberry, J.W.Zondlo: US Patent 5888469 (1999). Search in Google Scholar

[4] C.Chen, E.B.Kennel, A.H.Stiller, P.G.Stansberry, J.W.Zondlo: Carbon44 (2006) 1535. 10.1016/j.carbon.2005.12.021 Search in Google Scholar

[5] J.W.Klett, R.Hardy, E.Romine, C.A.Walls, T.D.Burchell: Carbon38 (2000) 953. 10.1016/S0008-6223(99)00190-6 Search in Google Scholar

[6] J.W.Klett: US Patent 6033506 (2000). Search in Google Scholar

[7] J.W.Klett, A.D.McMillan, N.C.Gallego, C.A.Walls: J. Mater. Sci.39 (2004) 3659. 10.1023/B:JMSC.0000030719.80262.f8 Search in Google Scholar

[8] J.W.Klett, A.D.McMillan, N.C.Gallego, T.D.Burchell, C.A.Walls: Carbon42 (2004) 1894. 10.1016/j.carbon.2004.04.007 Search in Google Scholar

[9] S.Z.Li, Y.Z.Song, Y.Song, J.L.Shi, L.Liu, X.H.Wei, Q.G.Guo: Carbon45 (2007) 2092. 10.1016/j.carbon.2007.05.014 Search in Google Scholar

[10] W.Q.Li, H.B.Zhang, X.Xiong, F.Xiao: Mater. Sci. Eng. A527 (2010) 7274. 10.1016/j.msea.2010.07.078 Search in Google Scholar

[11] W.Fawcett, D.K.Shetty: Carbon48 (2010) 68. 10.1016/j.carbon.2009.08.032 Search in Google Scholar

[12] T.Beechem, K.Lafdi: Carbon44 (2006) 1548. 10.1016/j.carbon.2005.12.044 Search in Google Scholar

[13] W.Q.Li, H.B.Zhang, X.Xiong, F.Xiao: Mater. Sci. Eng. A528 (2011) 2999. 10.1016/j.msea.2010.12.013 Search in Google Scholar

[14] J.J.Zhu, X.Y.Wang, L.F.Guo, Y.M.Wang, Y.P.Wang, M.F.Yu, K.-K.Lau: Carbon45 (2007) 2547. 10.1016/j.carbon.2007.08.019 Search in Google Scholar

[15] X.Y.Wang, J.M.Zhong, Y.M.Wang, M.F.Yu: Carbon44 (2006) 1560. 10.1016/j.carbon.2005.12.025 Search in Google Scholar

[16] B.D.Cullity, S.R.Stock: Elements of X-ray diffraction, Prentice-Hall Inc., New Jersey (2001). Search in Google Scholar

[17] I.Mochida: Carbon28 (1990) 311. 10.1016/0008-6223(90)90005-J Search in Google Scholar

[18] J.Sanchez-Coronado, D.D.L.Chung: Carbon41 (2003) 1175. 10.1016/S0008-6223(03)00025-3 Search in Google Scholar

[19] D.Gaies, K.T.Faber: Carbon40 (2002) 1137. 10.1016/S0008-6223(02)00099-4 Search in Google Scholar

[20] J.Blumm, D.Morgan, in: H.Wang, W.D.Porter, G.Worley (Eds.), Thermal Conductivity 27/Thermal Expansion 15, DEStech Publications, Inc., USA (2005) 83. Search in Google Scholar

[21] http://carbon.atomistry.com/physical_properties_amorphous_carbon.html Search in Google Scholar

[22] K.Anupam, G.N.Halder, Z.Roy, S.C.Sarkar, A.Yadav: Can. J. Chem. Eng.91 (2013) 751. 10.1002/cjce.21689 Search in Google Scholar

[23] Torayca® T300 Data Sheet, Technical Data Sheet No. CFA-001. Search in Google Scholar

[24] http://www.ultramet.com/refractoryopencells_properties_of_foam.html Search in Google Scholar

Received: 2015-05-26
Accepted: 2015-09-28
Published Online: 2016-02-05
Published in Print: 2016-02-10

© 2016, Carl Hanser Verlag, München