Accessible Requires Authentication Published by De Gruyter February 5, 2016

Thermodynamic properties over (Ni2Te3O8 + NiTe2O5) in the Ni–Te–O system: Transpiration thermogravimetric and Knudsen effusion mass spectrometric studies

Tiruppatur Subramaniam Lakshmi Narasimhan, Seshadreesan Nalini, Palraj Manikandan, Vinjavarapu Venkata Trinadh and Magapu Sai Baba

Abstract

Vaporisation studies over (Ni2Te3O8 + NiTe2O5) in the Ni–Te–O system were carried out by means of transpiration thermogravimetry (TTG) and Knudsen effusion mass spectrometry (KEMS) in the temperature ranges of 950 – 1 060 K and 850 – 950 K respectively. The transpiration measurements were performed for the first time. Comparison of total pressures obtained by TTG with that deduced using partial pressures of vaporising species from KEMS showed a good agreement providing reliable vapour pressures over this phase region. From vapour pressures, enthalpies of solid–gas and gas-phase equilibria and subsequently enthalpy and Gibbs free energies of formation of NiTe2O5(s) were derived. A thermochemical calculation was performed to assess the possibility of formation of the ternary NiTe2O5(s) phase on stainless steel clad of mixed-oxide fuelled fast breeder nuclear reactors.


*Correspondence address, Prof. Dr. T. S. Lakshmi Narasimhan, Fuel Chemistry Division, Chemistry Group, IGCAR, Kalpakkam 603 102, India. Tel.: +91-44-27400500-24184, Fax: +91-44-27480065, E-mail:

References

[1] M.G.Adamson, E.A.Aitken, T.B.Lindemer: J. Nucl. Mater.130 (1985) 375. 10.1016/0022-3115(85)90325-3 Search in Google Scholar

[2] M.G.Adamson, E.A.Aitken: J. Nucl. Mater.132 (1985) 160. 10.1016/0022-3115(85)90410-6 Search in Google Scholar

[3] R.Viswanathan: PhD thesis, University of Madras, India (1991). Search in Google Scholar

[4] R.Viswanathan, R.Balasubramanian, D.Darwin Albert Raj, M. SaiBaba, T.S. LakshmiNarasimhan: J. Alloys Compd.603 (2014) 75. 10.1016/j.jallcom.2014.03.040 Search in Google Scholar

[5] T.S. LakshmiNarasimhan, R.Balasubramanian, S.Nalini, M. SaiBaba: J. Nucl. Mater247 (1997) 28. 10.1016/S0022-3115(97)00061-5 Search in Google Scholar

[6] T.S. LakshmiNarasimhan, M. SaiBaba, R.Viswanathan: Thermochim. Acta427 (2005) 137. 10.1016/j.tca.2004.09.003 Search in Google Scholar

[7] T.S.Lakshmi, Narasimhan R.Viswanathan, R.Balasubramanian: J. Phys. Chem. B102 (1998) 10586. 10.1021/jp982174x Search in Google Scholar

[8] T.S. LakshmiNarasimhan, R.Viswanathan: The Open Thermodynamics Journal7 (2013) (Suppl. 1:M3) 10 and references quoted therein. 10.2174/1874396X01307010010 Search in Google Scholar

[9] T.S. LakshmiNarasimhan, R.Viswanathan: ECS Trans.46 (2013) 229 and references quoted therein. 10.1149/04601.0229ecst Search in Google Scholar

[10] T.S. LakshmiNarasimhan: PhD thesis, University of Madras, India, 2001. Search in Google Scholar

[11] T.S. LakshmiNarasimhan, M. SaiBaba, R.Viswanathan: J. Phys. Chem. B.106 (2002) 6762. 10.1021/jp014658q Search in Google Scholar

[12] T.S. LakshmiNarasimhan, M. SaiBaba, S.Nalini, R.Viswanathan: Thermochim. Acta410 (2004) 149. 10.1016/S0040-6031(03)00399-X Search in Google Scholar

[13] T.S. LakshmiNarasimhan, M. SaiBaba, R.Viswanathan: J. Phys. Chem. A110 (2006) 13705. 10.1021/jp064011b Search in Google Scholar

[14] T.S. LakshmiNarasimhan, S.Nalini, M. SaiBaba: Thermochim. Acta600 (2015) 67. 10.1016/j.tca.2014.11.024 Search in Google Scholar

[15] A.Lesar, A.Popovič, J.Marsel: J. Less-Common. Met.143 (1988) 151. 10.1016/0022-5088(88)90039-2 Search in Google Scholar

[16] K.Krishnan, GA. RamaRao, K. D. SinghMudher, V.Venugopal: J. Alloys Compd.288 (1999) 96. 10.1016/S0925-8388(99)00079-1 Search in Google Scholar

[17] R.Balasubramanian, TS. LakshmiNarasimhan, R.Viswanathan, S.Nalini, J. Phys. Chem. B112 (2008) 13873. 10.1021/jp8058883 Search in Google Scholar

[18] R.Viswanathan, T.S. LakshmiNarasimhan, S.Nalini: J. Chem. Eng. Data55 (2010) 3779. 10.1021/je100294t Search in Google Scholar

[19] T.S. LakshmiNarasimhan, R.Viswanathan, S.Nalini: J. Phys. Chem. B115 (2011) 13261. 10.1021/jp206586u Search in Google Scholar

[20] R.Viswanathan, T.S. LakshmiNarasimhan, S.Nalini: J. Phys. Chem. B113 (2009) 8362. 10.1021/jp900857t Search in Google Scholar

[21] U.Merten, W.E.Bell in: J.L.Margrave (Ed.), The Characterization of High-Temperature Vapours, John Wiley & Sons, New York (1967) 91. Search in Google Scholar

[22] JCPDS-ICDD (PDF-4+-2014): Indexing numbers: NiTe2O5: 0027–1306; Ni2Te3O8: 00-025-0586. Search in Google Scholar

[23] J.B.Mann, in: K.Ogata, T.Hayakawa, (Eds.), Recent Developments in Mass Spectrometry. Int. Conf. on Mass Spectrometry, Univ. of Tokyo, Press, Tokyo Japan (1970) 814 and personal communication. Search in Google Scholar

[24] F.Grønvold, J.Drowart, E.F.WestrumJr.: The Chemical Thermodynamics of Actinide Elements and Compounds, Part 4: The Actinide Chalcogenides (Excluding Oxides), IAEA, Vienna (1984). Search in Google Scholar

[25] R.Grimley, in: J.L.Margrave (Ed.), The Characterisation of High-Temperature Vapours, John Wiley & Sons, New York, Chapter 8 (1967). Search in Google Scholar

[26] O.Knacke, O.Kubaschewski, K.Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd Ed., Springer-Verlag, Berlin (1991). Search in Google Scholar

[27] K.C.Mills: Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworths, London (1974). Search in Google Scholar

[28] E.H.P.Cordfunke, R.J.M.Konings: Thermochemical Data for Reactor Materials and Fission Products, North Holland, Amsterdam (1990) 651. Search in Google Scholar

[29] O.Kubaschewski, C.B.Alcock: Metallurgical Thermochemistry, 5th Ed.Pergamon press1979. Search in Google Scholar

[30] M.V.Krishnaiah, P.Sriramamurti: J. Am. Ceram. Soc.67 (1984) 568. 10.1111/j.1151-2916.1984.tb19173.x Search in Google Scholar

[31] M.Azad, O.M.Sreedharan, J.B.Gnanamoorthy: J. Nucl. Mater.144 (1987) 94. 10.1016/0022-3115(87)90284-4 Search in Google Scholar

Received: 2015-07-17
Accepted: 2015-09-28
Published Online: 2016-02-05
Published in Print: 2016-02-10

© 2016, Carl Hanser Verlag, München