Accessible Requires Authentication Published by De Gruyter June 5, 2016

Relaxation and diffusion barriers at step edges of Cu, Ag and Au homo- and heterogeneous systems: Case of (100) facet

Mourad Benlattar, Elyakout Elkoraychy, Khalid Sbiaai, M'hammed Mazroui, Yahia Boughaleb and Hicham Gounaya

Abstract

Using molecular dynamics simulations based on the embedded atom method, we present the calculations of adsorption and activation energies for the diffusion of adatoms (Cu, Ag or Au) on Cu (100), Ag (100) or Au (100) surfaces with steps. We have also examined the relaxation trends and bond lengths of the adatoms for both fourfold and bridge sites. We note that the vertical distance of the adatom relaxation to the first nearest neighbors is the largest (1.56 %) for Ag on Cu (100) and the shortest (–14.58 %) for Cu on Au (100) as compared to other systems. On the other hand, for Cu on the Au (100) system, we find the adatom barrier for hopping along the step edges to be 0.44 eV, which is the highest for this process among the systems studied here, but the lowest barrier is found for Ag on Cu (100) compared to other systems and costs only 0.20 eV. Attention has also been focused on the evaluations of the adsorption and activation energies for the nine systems in the presence of step edges. The diffusion barriers over and along step edges are interpreted in terms of the cohesive energies of the adatoms and substrates. Moreover, these results can offer some basic rules for forecasting precise atomic surface morphologies in homo- and hetero-epitaxial growth.


*Correspondence address, Professor Mourad Benlattar, Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'Sik, Université Hassan II, B. P. 7955, Casablanca, Morocco, Tel.: +212 5 22 46 72 70, Fax: +212 5 22 70 46 75, E-mail:

References

[1] G.A.Somorjai: Introduction to surface chemistry and catalysis, Wiley & Sons, New York (1994).10.1007/BF01379568 Search in Google Scholar

[2] T.Zambelli, T.Wintterlin, J.Trost, G.Ertl: Science273 (1996) 1688. 10.1126/science.273.5282.1688 Search in Google Scholar

[3] B.N.J.Persson: Sliding friction: Physical principles and applications, Springer, Berlin, Heidelberg (1998). 10.1007/978-3-662-03646-4 Search in Google Scholar

[4] J.W.Evans, P.A.Thiel, M.C.Bartelt: Surf. Sci. Rep.61 (2006) 1. 10.1016/j.surfrep.2005.08.004. Search in Google Scholar

[5] R.Fasel, A.Cossy, K.H.Ernst, F.Baumberger, T.Greber, J.Osterwalder: J. Chem. Phys.115 (2001) 1020. 10.1063/1.2194541 Search in Google Scholar

[6] H.Brune: Surf. Sci. Rep.31 (1998) 125. 10.1016/S0167-5729(99)80001-6 Search in Google Scholar

[7] O.Pietzsch, A.Kubetzka, M.Bode, R.Wiesendanger: Phys. Rev. Lett.92 (2004) 057202. 10.1103/PhysRevLett.92.067201 Search in Google Scholar

[8] V.Repain, J.M.Berroir, S.Rousset, J.Lecoeur: Surf. Sci.447L1 (2000) 52. 10.1016/S0039-6028(99)01203-0 Search in Google Scholar

[9] P.Gambardella, M.Blanc, L.Burgi, K.Kuhnke, K.Kern: Surf. Sci.449 (2000) 93. 10.1016/j.susc.2011.02.004 Search in Google Scholar

[10] J.Vrijmoeth, H.A.van der Vegt, J.A.Meyer, E.Vlieg, R.J.Behm: Phys. Rev. Lett.72 (1994) 3843. 10.1103/PhysRevLett.72.3843 Search in Google Scholar

[11] K.Bromann, H.Brune, H.Roder, K.Kern: Phys. Rev. Lett.75 (1995) 677. 10.1103/PhysRevLett.75.677 Search in Google Scholar

[12] X.Liu, M.Hupalo, C.Z.Wang, W.C.Lu, A.Patricia, T.Kai-Ming Ho, M.C.Tringides: Phys. Rev.B 86 (2012) 081414. 10.1103/PhysRevB.86.081414 Search in Google Scholar

[13] J.Ellis, J.Ellis: Phys. Rev. Lett.70 (1993) 2118. 10.1103/PhysRevLett.70.2118 Search in Google Scholar

[14] A.G.Naumovets: PhysicaA 357 (2005) 189. 10.1016/j.physa.2005.06.027 Search in Google Scholar

[15] T.Ala-Nissila, R.Ferrando, S.C.Ying: Adv. Phys.51 (2002) 949. 10.1080/00018730110107902 Search in Google Scholar

[16] H.Oughaddou, B.Aufray, J.P.Bibérian, B.Ealet, G.L.Lay, G.Tréglia, A.Kara, T.S.Rahman: Surf. Sci.602 (2008) 506. 10.1016/j.susc.2007.10.053 Search in Google Scholar

[17] D.Flötotto, Z.M.Wang, L.P.H.Jeurgens, E.Bischoff, E.J.Mittemeijer: J. Appl. Phys.112 (2012) 043503. 10.1063/1.4746739 Search in Google Scholar

[18] S.Durukanoglu, A.Kara, T.S.Rahman: Phys. Rev.B 67 (2003) 235405. 10.1103/PhysRevB.67.205406 Search in Google Scholar

[19] A.Kara, A.Kara: Surf. Sci. Rep.56 (2005) 159187. 10.1016/j.surfrep.2004.09.003 Search in Google Scholar

[20] B.D.Yu, B.D.Yu: Phys. Rev. Lett.77 (1996) 1095. 10.1103/PhysRevLett.77.1095 Search in Google Scholar

[21] F.Rabbering, H.Wormeester, F.Everts, B.Poelsema: Phys. Rev.B 79 (2009) 075402. 10.1103/PhysRevB.79.075402 Search in Google Scholar

[22] H.Yildirim, H.Yildirim: Phys. Rev.B 80 (2009) 235413. 10.1103/PhysRevB.80.235413 Search in Google Scholar

[23] R.Heid, A.Kara, K.P.Bohnen, T.S.Rahman: Phys. Rev.B 65 (2002) 115405. 10.1103/PhysRevB.65.115405 Search in Google Scholar

[24] A.Karim, T.S.Rahman, M.Rusanen, I.T.Koponen, T.Ala-Nissila: Surf. Sci. Lett554 (2004) L113. 10.1016/j.susc.2003.12.041 Search in Google Scholar

[25] L.Hansen, P.Stoltze, K.W.Jacobsen, J.K.Norskov: Phys. Rev.B 44 (1991) 6523. 10.1103/PhysRevB.44.6523 Search in Google Scholar

[26] G.Boisvert, G.Boisvert: Phys. Rev.B 56 (1997) 7643. 10.1103/PhysRevB.56.7643 Search in Google Scholar

[27] G.Boisvert, L.G.Lewis, M.Puska, R.Nieminen: Phys. Rev.B 52 (1995) 9078. 10.1103/PhysRevB.52.9078 Search in Google Scholar

[28] W.Zhu, F.B.Mongeot, U.Valbusa, E.G.Wang, Z.Zhang: Phys. Rev. Lett.92 (2004) 106102. 10.1103/PhysRevLett.92.106102 Search in Google Scholar

[29] S.Durukanoğlu, O.S.Trushin, T.S.Rahman: Phys. Rev.B 73 (2006) 125426. 10.1103/PhysRevB.73.125426 Search in Google Scholar

[30] K.Sbiaai, Y.Boughaleb, J.Y.Raty, A.Hajjaji, M.Mazroui, A.Kara: J. Optoelectron. Adv. Mater.14 (2012) 1059. Search in Google Scholar

[31] E.Elkoraychy, K.Sbiaai, M.Mazroui, Y.Boughaleb, R.Ferrando: Surf. Sci.653 (2015) 69. 10.1016/j.susc.2014.12.009 Search in Google Scholar

[32] M.S.Daw, M.S.Daw: Phys. Rev.B 29 (1984) 6443. 10.1103/PhysRevB.29.6443 Search in Google Scholar

[33] L.Ventelon, L.Ventelon: J. Computer-Aided Mater. Des.14 (2007) 85. 10.1007/s10820–007–9064-y Search in Google Scholar

[34] C.Mottet, G.Tréglia, B.Legrand: Phys. Rev.B 46 (1992) 16018. 10.1103/PhysRevB.46.16018 Search in Google Scholar

[35] C.Kittel: Introduction to Solid State Physics;Wiley, New York (1997). Search in Google Scholar

[36] H.Yildirim, S.K.R.S.Sankaranarayznan, J.P.Greeley: J. Phys. Chem.116 (2012) 22475. 10.1021/jp3089275 Search in Google Scholar

[37] V.Fiorentini, M.Methfessel, M.Scheffler: Phys. Rev. Lett.71 (1993) 1051. 10.1103/PhysRevLett.71.1051 Search in Google Scholar

[38] A.Filippetti, A.Filippetti: Phys. Rev.B 60 (1999) 14366. 10.1103/PhysRevB.60.14366 Search in Google Scholar

[39] O.O.Brovko, N.N.Negulyaev, V.S.Stepanyuk: Phys. Rev.B 82 (2010) 155452. 10.1103/PhysRevB.82.155452 Search in Google Scholar

[40] G.Ehrlich, G.Ehrlich: J. Chem. Phys.44 (1966) 1039. 10.1063/1.1726787 Search in Google Scholar

[41] Y.Mo, W.Zhu, E.Kaxiras, Z.Zhang: Phys. Rev. Lett.101 (2008) 216101. 10.1103/PhysRevLett.101.216101 Search in Google Scholar

[42] K.Bromann, H.Brune, H.Röder, K.Kern: Phys. Rev. Lett.75 (1995) 677. 10.1103/PhysRevLett.75.677 Search in Google Scholar

[43] J.E.Prieto, J.de la Figuera, R.Miranda: Phys. Rev.B 62 (2000) 2126. 10.1103/PhysRevB.62.2126 Search in Google Scholar

[44] R.Smoluchowski: Phys. Rev.60 (1941) 661. 10.1103/PhysRev.60.661 Search in Google Scholar

Received: 2015-12-21
Accepted: 2016-02-15
Published Online: 2016-06-05
Published in Print: 2016-06-10

© 2016, Carl Hanser Verlag, München