Abstract
Both experimental investigation and thermodynamic calculation were performed for the Mg–Sr–Zr system. Four decisive alloys were firstly selected and prepared using a powder metallurgy method to measure the isothermal section at 400 °C via a combination of X-ray diffraction and electron probe microanalysis. No ternary compound has been observed for this ternary system. Four three-phase regions, (Mg) + (αZr) + Mg17Sr2, Mg17Sr2 + (αZr) + Mg38Sr9, Mg38Sr9 + (αZr) + Mg23Sr6, and Mg23Sr6 + (αZr) + Mg2Sr, have been identified at 400 °C. No appreciable ternary solubility has been detected in the binary Mg–Sr compounds. Phase transition temperatures of the Mg–Sr–Zr alloys were measured by means of differential scanning calorimetry. The thermodynamic calculations match well with the experimental data in the present work, indicating that no ternary thermodynamic parameters are needed for the thermodynamic description of this ternary system. In order to verify the reliability of the current thermodynamic calculations of the Mg–Sr–Zr system, eight as-cast alloys in the Mg-rich corner were also prepared. The calculated liquidus projection is consistent with the observed primary phase regions. The present thermodynamic calculations are reliable and can be used in the development of Mg alloys.
References
[1] B.L.Mordike, B.L.Mordike: Mater. Sci. Eng. A302 (2001) 37. 10.1007/s11661-014-2209-1Search in Google Scholar
[2] B.Denkena, F.Witte, C.Podolsky, A.Lucas: Degradable implants made of magnesium alloys, Proc. 5th Euspen International Conference, Euspen, Montpellier. UK (2005) 735.Search in Google Scholar
[3] M.P.Staiger, A.M.Pietak, J.Huadmai, G.Dias: Biomaterials27 (2006) 1728. 10.1016/j.biomaterials.2005.10.003Search in Google Scholar
[4] F.Witte: Acta Biomater.6 (2010) 1680. 10.1016/j.actbio.2010.02.028Search in Google Scholar
[5] M.M.Avedesian, M.M.Avedesian: Magnesium and Magnesium Alloys, ASM Int. Materials Park, OH USA (1999).Search in Google Scholar
[6] M.B.Yang, F.S.Pan, R.J.Cheng, A.T.Tang: J. Mater. Sci.42 (2007) 10074. 10.1007/s10853-007-2035-6Search in Google Scholar
[7] R.H.Li, F.S.Pan, B.Jiang, H.M.Yin, T.T.Liu: Trans. Nonferrous Met. Soc. China21 (2011) 778. 10.1016/S1003-6326(11)60780-2Search in Google Scholar
[8] R.J.Cheng, F.S.Pan, M.B.Yang, A.T.Tang: Trans. Nonferrous Met. Soc. China18 (Suppl. 1) (2008) 50. 10.1016/S1003-6326(10)60173-2Search in Google Scholar
[9] G.Atkins, K.Welldon, P.Halbout, D.Findlay: Osteoporos. Int.20 (2009) 653. 10.1007/s00198-008-0728-6Search in Google Scholar
[10] A.Sadeghi, A.Sadeghi: Mater. Charact.62 (2011) 742. 10.1016/j.matchar.2011.05.006Search in Google Scholar
[11] A.Yamamoto, R.Honma, M.Sumita: J. Biomed. Mater. Res.39 (1998) 331. 10.1002/(SICI)1097-4636(199802)39:62<331::AID-JBM22>3.0.CO;2-ESearch in Google Scholar
[12] H.Matsuno, A.Yokoyama, F.Watari, M.Uo, T.Kawasaki: Biomaterials22 (2001) 1253. 10.1016/S0142-9612(00)00275-1Search in Google Scholar
[13] W.Geurtsen: Crit. Rev. Oral. Biol. Med.13 (2002) 71. 10.1177/154411130201300108Search in Google Scholar PubMed
[14] E.Eisenbarth, D.Velten, M.Muller, R.Thull, J.Breme: Biomaterials25 (2004) 5705. 10.1016/j.biomaterials.2004.01.021Search in Google Scholar PubMed
[15] Y.C.Li, C.E.Wen, D.Mushahary, R.Sravanthi, N.Harishankar, G.Pande, P.Hodgson: Acta Biomater.8 (2012) 3177. 10.1016/j.actbio.2012.04.028Search in Google Scholar PubMed
[16] Y.F.Ding, Y.C.Li, J.X.Lin, C.E.Wen: J. Mater. Chem.B 3 (2015) 3714. 10.1039/c5tb00433kSearch in Google Scholar PubMed
[17] F.S.Pan, M.B.Yang, J.Shen, L.Wu: Mater. Sci. Eng. A528 (2011) 4292. 10.1016/j.msea.2011.01.069Search in Google Scholar
[18] M.B.Yang, H.L.Li, R.J.Cheng, F.S.Pan, H.J.Hu: Mater. Sci. Eng.A 545 (2012) 201. 10.1016/j.msea.2012.03.035Search in Google Scholar
[19] H.Liu, Y.Gao, J.Z.Liu, Y.M.Wang, J.F.Nie: Acta Mater.61 (2013) 453. 10.1016/j.actamat.2012.09.044Search in Google Scholar
[20] C.Y.He, Y.Du, H.L.Chen, H.Ouyang: Int. J. Mater. Res.99 (2008) 907. 10.3139/146.101719Search in Google Scholar
[21] P.S.Wang, J.R.Zhao, Y.Du, H.H.Xu, T.Gang, J.C.Fen, L.J.Zhang, C.Y.He, S.H.Liu: Int. J. Mater. Res.102 (2011) 6. 10.3139/146.110442Search in Google Scholar
[22] K.M.Cheng, H.Zhou, B.Hu, Y.Du, S.H.Liu, H.H.Xu, L.B.Liu, H.W.Ouyang: Metall. Mater. Trans.A 45 (2014) 2708. 10.1007/s11661-014-2209-1Search in Google Scholar
[23] K.M.Cheng, H.Zhou, Y.Du, S.H.Liu, H.H.Xu: J. Mater. Sci.49 (2014) 7124. 10.1007/s10853-014-8420-zSearch in Google Scholar
[24] H.Zhou, C.Chen, Y.Wang, Y.Du: CALPHAD52 (2016) 110. 10.1016/j.calphad.2015.12.005Search in Google Scholar
[25] Y.Zhong, J.O.Sofo, A.A.Luo, Z.K.Liu: J. Alloys Compd.421 (2006) 172. 10.1016/j.jallcom.2005.09.076Search in Google Scholar
[26] R.Arroyave, D.Shin, Z.K.Liu: CALPHAD29 (2005) 230. 10.1016/j.calphad.2005.07.004Search in Google Scholar
[27] L.L.Rokhlin: Landolt-Börnstein, Group IV, Physical Chemistry, Springer-Verlag, Berlin Heidelberg (2005).Search in Google Scholar
[28] A.A.Nayeb-Hashemi, J.B.Clark: J. Phase Equilib.6 (1985) 160. 10.1007/BF02869234Search in Google Scholar
[29] E.A.Sheldon, E.A.Sheldon: Acta Crystallogr.6 (1953) 100. 10.1107/S0365110X53000302Search in Google Scholar
[30] G.Bruzzone: J. Less-Common Met.11 (1966) 249. 10.1016/0022-5088(66)90011-7Search in Google Scholar
[31] F.A.Kanda, F.A.Kanda: J. Less-Common Met.32 (1973) 97. 10.1016/0022-5088(73)90075-1Search in Google Scholar
[32] F.Merlo, F.Merlo: Acta Crystallogr. B38 (1982) 1797. 10.1107/S0567740882007213Search in Google Scholar
[33] F.E.Wang, F.A.Kanda, C.F.Miskell, A.J.King: Acta Crystallogr.18 (1965) 24. 10.1107/S0365110X65000051Search in Google Scholar
[34] O.Reckeweg, C.Lind, A.Simon, F.J.DiSalvo: J. Alloys Compd.384 (2004) 98. 10.1016/j.jallcom.2004.04.082Search in Google Scholar
[35] B.Sundman, B.Jansson, J.O.Andersson: CALPHAD9 (1985) 153. 10.1016/0364-5916(85)90021-5Search in Google Scholar
© 2016, Carl Hanser Verlag, München