Abstract
The interdiffusion behavior of bcc_B2 Ni–Al–Cu alloys at 1173 K was experimentally investigated on the basis of six groups of bulk diffusion couples. With the electron probe microanalysis technique and the Matano–Kirkaldy method, the composition-dependent mole-fraction interdiffusion coefficients and the interdiffusion fluxes in bcc_B2 Ni–Al–Cu alloys at 1173 K were determined. The reliability of the presently obtained interdiffusivities was verified by the thermodynamic stability constraints, comparison with the interdiffusion coefficients in boundary binary bcc_B2 Ni–Al alloys as well as numerical simulations based on Fick's second law.
References
[1] D.B.Miracle: Acta Mater.41 (1993) 649. 10.1016/0956-7151(93)90001-9Search in Google Scholar
[2] R.D.Noebe, R.R.Bowman, M.V.Nathal: Int. Mater. Rev.38 (1993) 193. 10.1179/imr.1993.38.4.193Search in Google Scholar
[3] M.C.Iordache, S.H.Whang, Z.Jiao, Z.M.Wang: Nanostruct. Mater.11 (1999) 1343. 10.1016/S0965-9773(00)00427-XSearch in Google Scholar
[4] M.Jahazi, A.R.Mashreghi: Mater. Sci. Technol.18 (2002) 458. 10.1179/026708302225001606Search in Google Scholar
[5] M.Watanabe, Z.Horita, M.Nemoto: Interface Sci.4 (1997) 229. 10.1007/BF00240244Search in Google Scholar
[6] M.Watanabe, Z.Horita, M.Nemoto: Defect Diffus. Forum143–147 (1997) 345. 10.4028/www.scientific.net/DDF.143-147.345Search in Google Scholar
[7] S.Kim, Y.A.Chang: Metall. Mater. Trans. A31 (2000) 1519. 10.1007/s11661-000-0162-7Search in Google Scholar
[8] L.Zhang, Y.Du, Q.Chen, I.Steinbach, B.Huang: Int. J. Mater. Res.101 (2010) 1461. 10.3139/146.110428Search in Google Scholar
[9] R.Nakamura, K.Fujita, Y.Iijima, M.Okada: Acta Mater.51 (2003) 3861. 10.1016/S1359-6454(03)00210-6Search in Google Scholar
[10] J. SeungJoon, H.-C.Lee: Mater. Sci. Eng. A153 (1992) 392. 10.1016/0921-5093(92)90226-QSearch in Google Scholar
[11] J.Colín, S.Serna, B.Campillo, O.Flores, J.Juárez-Islas: Intermetallics16 (2008) 847. 10.1016/j.intermet.2008.03.001Search in Google Scholar
[12] X.Du, C.Gao, B.Wu, Y.Zhao, J.Wang: Int. J. Miner. Metall. Mater.19 (2012) 348. 10.1007/s12613-012-0562-xSearch in Google Scholar
[13] M.A.Dayananda, C.W.Kim: Metall. Trans. A10 (1979) 1333. 10.1007/BF02811989Search in Google Scholar
[14] L.Zhang, Y.Du, Y.Ouyang, H.Xu, X.G.Lu, Y.Liu, Y.Kong, J.Wang: Acta Mater.56 (2008) 3940. 10.1016/j.actamat.2008.04.017Search in Google Scholar
[15] Y.H.Sohn, M.A.Dayananda: Acta Mater.48 (2000) 1427. 10.1016/S1359-6454(99)00454-1Search in Google Scholar
[16] W.Chen, L.Zhang, Y.Du, C.Tang, B.Huang: Scr. Mater.90–91 (2014) 53. 10.1016/j.scriptamat.2014.07.016Search in Google Scholar
[17] H.Xu, W.Chen, L.Zhang, Y.Du, C.Tang: J. Alloys Compd.644 (2015) 687. 10.1016/j.jallcom.2015.05.030Search in Google Scholar
[18] J.S.Kirkaldy: Can. J. Phys.35 (1957) 435. 10.1139/p57-047Search in Google Scholar
[19] J.S.Kirkaldy, J.E.Lane, G.R.Mason: Can. J. Phys.41 (1963) 2174. 10.1139/p63-212Search in Google Scholar
[20] J.S.Kirkaldy, D.Weichert, Z.-U.Haq: Can. J. Phys.41 (1963) 2166. 10.1139/p63-211Search in Google Scholar
[21] Y.Du, S.Liu, L.Zhang, H.Xu, D.Zhao, A.Wang, L.Zhou: Calphad35 (2011) 427. 10.1016/j.calphad.2011.06.007Search in Google Scholar
[22] J.E.Morral: J. Phase Equilib. Diffus.35 (2014) 581. 10.1007/s11669-014-0308-8Search in Google Scholar
[23] L.Onsager: Ann. N.Y. Acad. Sci.46 (1945) 241. 10.1111/j.1749-6632.1945.tb36170.xSearch in Google Scholar
[24] M.A.Dayananda: Metall. Mater. Trans. A14 (1983) 1851. 10.1007/BF02645555Search in Google Scholar
[25] J.O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350. 10.1063/1.351745Search in Google Scholar
[26] D.P.Whittle, A.Green: Scr. Metall.8 (1974) 883. 10.1016/0036-9748(74)90311-1Search in Google Scholar
[27] J.Lechelle, S.Noyau, L.Aufore, A.Arredondo, F.Audubert: Diffus. Fundam. Org.17 (2012) 1.Search in Google Scholar
© 2016, Carl Hanser Verlag, München