Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2016

Comparing predictions from constitutive equations and artificial neural network model of compressive behavior in carbon nanotube–aluminum reinforced ZA27 composites

  • Yang Liu , Yunke Zhu , Cong Geng and Junrui Xu


Hybrid carbon nanotube–aluminum reinforced ZA27 composites under hot compressive forces were investigated in the temperature range of 473 – 523 K with strain rates of 0.01 – 10 s−1. From the experimental data, the flow stress curves for increasing strain exhibit typical flow behavior associated with dynamic recrystallization softening. A comparison of predictions from an artificial neural network model and the constitutive equations to describe the hot compressive behavior was performed. Relative errors varied from −4.14 % to 6.75 % for the artificial neural network model and from −15.93 % to 17.29 % using the constitutive equations. The results indicate that the artificial neural network model was more accurate and efficient in predicting hot compressive behavior.

*Correspondence address, Dr. Yang Liu, School of Mechanical Engineering, Xiangtan University, 411105 Xiangtan, China, Tel.: +86 73158292454, Fax: +86 73158292454, E-mail:


[1] Y.Liu, H.Y.Li, H.F.Jiang, X.J.Su: Mater. Sci. Techol.29 (2013) 184. 10.1179/1743284712Y.0000000127Search in Google Scholar

[2] Y.Liu, H.Y.Li, H.F.Jiang, X.C.Lu: Trans. Nonferrous Met. Soc. China23 (2013) 642. 10.1016/S1003-6326(13)62511-XSearch in Google Scholar

[3] J.H.Wang, J.F.Huang, X.P.Su, C.J.Wu: Mater. Des.38 (2012) 133. 10.1016/j.matdes.2012.01.044Search in Google Scholar

[4] Y.H.Zhu, S.To, X.M.Liu, G.L.Hu: Metall. Mater. Trans. A42 (2011) 1933. 10.1007/s11661-010-0591-xSearch in Google Scholar

[5] A.M.K.Esawi, K.Morsi, A.Sayed, M.Taher, S.Lanka: Compos. Sci. Technol.70 (2010) 2237. 10.1016/j.compscitech.2010.05.004Search in Google Scholar

[6] H.J.Choi, J.H.Shin, D.H.Bae: Compos. Sci. Technol.71 (2011) 1699. 10.1016/j.compscitech.2011.07.013Search in Google Scholar

[7] H.J.Choi, G.B.Kwon, G.Y.Lee, D.H.Bae: Scr. Mater.59 (2008) 360. 10.1016/j.scriptamat.2008.04.006Search in Google Scholar

[8] C.S.Goh, J.Wei, L.C.Lee, M.Gupta: Compos. Sci. Technol.68 (2008) 1432. 10.1016/j.compscitech.2007.10.057Search in Google Scholar

[9] B.M.Praveen, T.V.Venkatesha, Y.N.Arthoba, K.Prashantha: Surf. Coat. Technol.2015 (2007) 5836. 10.1016/j.surfcoat.2006.10.034Search in Google Scholar

[10] M.H.Naia, J.Wei, M.Gupta: Mater. Des.60 (2014) 490. 10.1016/j.matdes.2014.04.011Search in Google Scholar

[11] M.K.Habibia, M.Paramsothy, A.M.S.Hamouda, M.Gupta: Compos. Sci. Technol.71 (2011) 734. 10.1016/j.compscitech.2011.01.021Search in Google Scholar

[12] M.K.Habibia, A.M.S.Hamouda, M.Gupta: Compos. Sci. Technol.72 (2012) 290. 10.1016/j.compscitech.2011.11.015Search in Google Scholar

[13] Y.C.Lin, M.S.Chen: J. Mater. Sci.44 (2009) 835. 10.1007/s10853-008-3074-3Search in Google Scholar

[14] D.Samantaray, S.Mandal, A.K.Bhaduri, S.Venugopal, P.V.Sivaprasad: Mater. Sci. Eng. A528 (2011) 1937. 10.1016/j.msea.2010.11.011Search in Google Scholar

[15] Z.L.Lu, Q.L.Pan, X.Y.Liu, Q.J.Qin, Y.B.He, S.F.Cao: Mech. Res. Commun.38 (2011) 192. 10.1016/j.mechrescom.2011.02.015Search in Google Scholar

[16] S.Mandal, V.Rakesh, P.V.Sivaprasad, S.Venugopal, K.V.Kasiviswanathan: Mater. Sci. Eng. A500 (2009) 114. 10.1016/j.msea.2008.09.019Search in Google Scholar

[17] D.Samantaray, S.Mandal, A.K.Bhaduri: Comput. Mater. Sci.47 (2009) 568. 10.1016/j.commatsci.2009.09.025Search in Google Scholar

[18] W.D.Song, J.G.Ning, X.N.Mao, H.P.Tang: Mater. Sci. Eng.A576 (2013) 280. 10.1016/j.msea.2013.04.014Search in Google Scholar

[19] Y.C.Lin, M.S.Chen, J.Zhong: Mater. Lett.62 (2008) 2132. 10.1016/j.matlet.2007.11.032Search in Google Scholar

[20] J.Cai, F.G.Li, T.Y.Liu, B.Chen, M.He: Mater. Des.32 (2011) 1144. 10.1016/j.matdes.2010.11.004Search in Google Scholar

[21] H.Y.Li, Y.Liu, X.C.Lu, X.J.Su: J. Mater. Sci.47 (2012) 5411. 10.1007/s10853-012-6427-xSearch in Google Scholar

[22] Y.C.Lin, X.Fang, Y.P.Wang: J. Mater. Sci.43 (2008) 5508. 10.1007/s10853-008-2832-6Search in Google Scholar

[23] N.S.Reddy, Y.H.Lee, C.H.Park, C.S.Lee: Mater. Sci. Eng. A49 (2008) 2276.Search in Google Scholar

[24] Y.Sun, W.D.Zeng, Y.Q.Zhao, X.M.Zhang, Y.Shu, Y.G.Zhou: Mater. Des.32 (2011) 1537. 10.1016/j.matdes.2010.10.004Search in Google Scholar

[25] C.H.Liao, H.Y.Wu, S.Y.Lee, F.J.Zhu, H.C.Liu, C.T.Wu: Mater. Sci. Eng. A565 (2013) 1. 10.1016/j.msea.2012.12.025Search in Google Scholar

[26] S.S.Zhou, K.K.Deng, J.C.Li, K.B.Nie, F.J.Xu, H.F.Zhou, J.F.Fan: Mater. Des.64 (2014) 177. 10.1016/j.matdes.2014.07.039Search in Google Scholar

[27] C.J.Lu, L.J.Huang, L.Geng, B.Kaveendran, Z.Z.Zheng, J.Zhang: Mater. Charact.104 (2015) 139. 10.1016/j.matchar.2015.03.036Search in Google Scholar

[28] C.Zener, J.H.Hollomon: J. Appl. Phys.15 (1944) 22. 10.1063/1.1707363Search in Google Scholar

[29] C.M.Sellars, W.J.McTegart: Acta Metall.14 (1966) 1136. 10.1016/0001-6160(66)90207-0Search in Google Scholar

[30] M.P.Phaniraj, A.K.Lahiri: J. Mater. Process. Technol.141 (2003) 219. 10.1016/S0924-0136(02)01123-8Search in Google Scholar

[31] S.Srinivasulu, A.Jain: Appl. Soft Comput.6 (2006) 295. 10.1016/j.asoc.2005.02.002Search in Google Scholar

Received: 2015-11-05
Accepted: 2016-03-23
Published Online: 2016-08-31
Published in Print: 2016-07-14

© 2016, Carl Hanser Verlag, München

Downloaded on 9.2.2023 from
Scroll Up Arrow